
Mozilla Version Control Tools
Release 0

Aug 12, 2023

Contents

1 Goals 3

2 Table of Contents 5
2.1 Developer Guide . 5
2.2 Mercurial Customizations . 13
2.3 Headless Repositories . 15
2.4 Mercurial for Mozillians . 17
2.5 hg.mozilla.org . 55
2.6 GitHub Webhooks . 121

3 Python Module Documentation 123
3.1 mozautomation package . 123
3.2 mozhg package . 128
3.3 vcttesting . 130

4 Indices and tables 133

Python Module Index 135

Index 137

i

ii

Mozilla Version Control Tools, Release 0

Welcome to Mozilla’s version control tools repository! Inside, you will find all kinds of code to support the develop-
ment of code at Mozilla.

This repository contains the code that Mozilla uses in production to power hg.mozilla.org, Autoland, version control
synchronization, and other sites and services.

The canonical repository is https://hg.mozilla.org/hgcustom/version-control-tools/.

Contents 1

https://hg.mozilla.org/
https://hg.mozilla.org/hgcustom/version-control-tools/

Mozilla Version Control Tools, Release 0

2 Contents

CHAPTER 1

Goals

The primary goal of this repository and the code therein is to enable Mozillians to move faster and to be more produc-
tive, all while maximizing the quality of work being performed.

We help achieve that goal by providing robust tools that allow developers to spend more time using their brains instead
of wrangling with tools, particularly in the area of version control and code management.

This repository aims to provide high-quality software that has a low barrier to change. We achieve this by having
comprehensive, easy-to-write and run tests. Robust testing gives us the confidence that we can move fast without
breaking things. Doing so allows us to serve the needs of Mozilla better and faster.

3

Mozilla Version Control Tools, Release 0

4 Chapter 1. Goals

CHAPTER 2

Table of Contents

2.1 Developer Guide

Interested in contributing to Mozilla’s version control tools? You’ve come to the right place!

2.1.1 Contributing

Find a bug? Interested in contributing a bug fix or enhancement? Read on!

Filing Bugs

Bugs against software in this repository can be filed in the Developer Services Bugzilla product. The component
should be obvious. If you are unsure, use General.

Contacting Us

The people that maintain the code in this repository lurk in the following Matrix channels on chat.mozilla.org:

#vcs Where everybody who maintains all the version control properties hangs out.

Just pop in a channel, ask a question, and wait for someone to answer. The channels can be quiet for hours at a time,
so please stick around if nobody replies at first.

Submitting Patches for Review

We use https://phabricator.services.mozilla.com/ for conducting code review.

See https://moz-conduit.readthedocs.io/en/latest/phabricator-user.html for information on how to configure Phabrica-
tor at Mozilla. You will want to use the rVCT repository for review.

Before submitting patches for review, please run the tests and verify things still work. Please also read the following
section on how to optimally create commits.

5

https://bugzilla.mozilla.org/enter_bug.cgi?product=Developer%20Services
https://phabricator.services.mozilla.com/
https://moz-conduit.readthedocs.io/en/latest/phabricator-user.html

Mozilla Version Control Tools, Release 0

Commit Creation Guidelines

We prefer many, smaller and focused commits than fewer, larger commits. Please read Phabricator’s Recommenda-
tions on Revision Control and apply the One Idea Per Commit practice to patches to this repository. Please also read
their article on Writing Reviewable Code and tailor your commits appropriately.

It is recommended for commits to this repository to have the following commit message convention:

component: short description (bug xyz); r=reviewer

A sentence explaining the purpose of the patch. Another sentence
adding yet more detail.

Another paragraph adding yet more detail. We really like context to
exist in our patches rather than elsewhere.

The first line of the commit message begins with the component the patch is touching. Run hg log and see what
others have used if you don’t know what to put here. The short description should be pretty obvious.

If the patch is tracked in a bug, please enclose the bug in parenthesis at the end of the commit message. This is
different from the Firefox convention. We do things differently because we want the beginning of the commit
message to emphasize the thing that was changed. This improves discovery when filtering through commit messages,
as it allows you to easily and cheaply find all commits that changed a specific component. Furthermore, we prefer to
work with the mentality of code, not bugs, being first. We defer the bug to the end of the summary line to reflect that.

Bug and Review Requirements

We do not require that every commit have a bug association. If there isn’t a bug on file, please don’t waste time
filing one just to write a patch.

We do not require that every commit be reviewed.

Please abide by the following rules before pushing without a bug or review:

• A review is required if you are modifying code that runs on a production service or we install or recommend
installing on a user’s machine (MozReview, Mercurial extensions, Mercurial hooks, etc).

• If you are adding new test code and you know what you are doing, you may not need a review. This exception
is a little fuzzy around tests for production code (reviews are helpful to ensure the tests are accurate and proper).

• If you are adding or hacking on a miscellaneous tool that doesn’t have test coverage or isn’t widely used or
relied upon, you may not need a review.

• You do not need a review to update documentation. If something is wrong, just fix it.

• When in doubt, ask someone on #vcs if you need a review before pushing.

Pushing Commits

When pushing commits to ssh://hg.mozilla.org/hgcustom/version-control-tools, it is impor-
tant for you to set the @ bookmark to the new tip.

Say you’ve created a new head or bookmark for your commit series. Assuming the working directory of your reposi-
tory is on the commit you wish to make the new repository tip, here is how you should land your changes:

6 Chapter 2. Table of Contents

https://secure.phabricator.com/book/phabflavor/article/recommendations_on_revision_control/
https://secure.phabricator.com/book/phabflavor/article/recommendations_on_revision_control/
https://secure.phabricator.com/book/phabflavor/article/writing_reviewable_code/

Mozilla Version Control Tools, Release 0

$ hg pull
pulling from default
requesting all changes
adding changesets
adding manifests
adding file changes
added 2 changesets with 2 changes to 1 files
updating bookmark @

$ hg rebase -d @
$ hg bookmark @
moving bookmark '@' forward from abcdef012345

$ hg push -B @
pushing to default
searching for changes
adding changesets
adding manifests
adding file changes
added 2 changesets with 2 changes to 4 files
exporting bookmark @

If you fail to update the remote @ bookmark, nothing bad should happen. So don’t worry too much if you forget to do
it from time to time.

If you do forget, just perform a hg push -B @ any time to update the remote bookmark. You can do this if you
have no new changesets to push.

2.1.2 Contributing to Documentation

Improvements to the documentation in this repository are very welcome!

Building Documentation Locally

To build documentation locally, you will need a Python environment.

Assuming you already have a copy of the source repository, run the following commands to activate the environment
for building the docs:

$./create-environment docs
$ source venv/docs/bin/activate

Then to build the docs:

$ make -C docs html

You can then open docs/_build/html/index.html in your web browser to navigate the generated docs.

Submitting Patches

If you have a change to the docs that you would like to be incorporated, please follow the regular contributing guide
to learn how to submit patches.

Commit messages for documentation-only changes should be prefixed with docs:.

2.1. Developer Guide 7

Mozilla Version Control Tools, Release 0

2.1.3 Creating and Maintaining a Development Environment

Requirements

To create a development and test environment, you’ll need Linux or OS X host operating system. Windows is cur-
rently not supported.

You will need Python 2.7.

Many components use Docker. You’ll need Docker to perform many tasks. Functionality requiring Docker should be
skipped if Docker is not available.

Aside from the base requirements, the development and testing environment should be fully self-contained and won’t
pollute your system.

If you are on Windows or want to create a fully-isolated environment, the Vagrant configuration used by Jenkins
provides a fully capable environment.

Ubuntu Requirements

On a fresh Ubuntu 16.04 install, the following packages need to be installed:

• build-essential

• git

• python-dev

• libcurl4-openssl-dev

• libffi-dev

• liblzma-dev

• libsasl2-dev

• libldap2-dev

• libssl-dev

• python3

• sqlite3

• zlib1g-dev

• mercurial (to clone version-control-tools)

Many of these dependencies are needed to compile binary Python extensions that are part of the virtualenv.

You can install these dependencies by running:

$ sudo apt-get install build-essential git python-dev \
libcurl4-openssl-dev libffi-dev liblzma-dev \
libsasl2-dev libldap2-dev libssl-dev python3 sqlite3 zlib1g-dev \
mercurial

You will also need to install Docker for a number of test and dev environments to work. See the official Docker
instructions for more. You will likely need to go through the post installation steps for Linux as well.

8 Chapter 2. Table of Contents

https://www.docker.com/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/linux-postinstall/

Mozilla Version Control Tools, Release 0

Creating and Updating Your Environment

Development and testing requires the creation of a special environment containing all the prerequisites necessary to
develop and test. This is accomplished by running the following command:

$./create-environment test

Tip: You should periodically run create-environment test to ensure everything is up to date. (Yes, the tools
should do this automatically.)

Activating an Environment

Once you’ve executed create-environment test, you’ll need to activate it so your current shell has access to
all its wonders:

$ source venv/bin/activate

boot2docker

If you are running OS X and have boot2docker installed to run Docker containers, you may want to increase the
amount of memory available to the boot2docker VM.

Run the following to see how much memory is currently allocated to boot2docker:

$ boot2docker config | grep Memory
2048

The default is 2048 (megabytes). We recommend at least 4096 MB.

To adjust the amount of memory allocated to boot2docker, run the following:

$ VBoxManage modifyvm boot2docker-vm --memory 4096

Alternatively, if you haven’t created a boot2docker VM yet, define the memory allocation when you create it:

$ boot2docker init --memory=4096

2.1.4 Testing

Methodology

Testing the code in this repository is taken very seriously. We want to facilitate confidence that any change will have the
intended side-effects and won’t regress behavior. We do this by providing a testing framework that is comprehensive
and robust.

We currently support the following flavors of tests:

1. Python unit tests

2. Mercurial t tests

3. Mercurial .py tests

2.1. Developer Guide 9

Mozilla Version Control Tools, Release 0

The test driver is responsible for identifying which flavor a particular file is.

Many tests interact with services running locally, commonly inside Docker containers. Running actual services is
encouraged over mocking.

Running

Tests are executed by running the following in a built environment:

$./run-tests

To see help on options that control execution:

$./run-tests --help

Unknown script arguments will be proxied to Mercurial’s run-tests.py testing harness.

Common tasks are described below.

Obtain code coverage results (makes tests run slower):

$./run-tests --cover

Use Docker images from last run (makes tests run faster):

$./run-tests --use-last-images

Test a single file:

$./run-tests path/to/test.t

Run all tests in a directory:

$./run-tests hgext/pushlog

Run a test in debug mode (see progress, interact with a debugger):

$./run-tests -d path/to/test.t

Run tests against all supported Mercurial versions:

$./run-tests --all-hg-versions

Run tests with a specific Mercurial installation:

$./run-tests --with-hg=/path/to/hg

Do not run Selenium tests:

$./run-tests --headless

Do not run tests that require Docker:

$./run-tests --no-docker

Run tests 1 at a time:

10 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

$./run-tests -j1

By default, certain flaky tests do not run in the test suite. You can run them anyways with:

$./run-tests --run-flaky

Authoring Tests

Test File Naming

Mercurial .t and .py tests will be automatically discovered from the following directories:

• hgext/*/tests/

• hghooks/tests/

Mercurial test filenames must be prefixed with test-. e.g. test-foo.t.

Python unit tests will be discovered from the following directories:

• pylib/**

Python unit test filenames must be prefixed with test. e.g. test_foo.py.

To write a new test, simply put the test file in one of the aforementioned directories and name it so that it will be
discovered. If you run run-tests path/test/test and the specified filename wouldn’t get discovered, an
error will be raised saying so.

Choice of Test Flavor

Mercurial t tests are recommended for most tests.

Mercurial t tests are glorified shell scripts. Tests consist of a series of commands that will be invoked in a shell.
However, they are much more than that. Expected output from commands is captured inline in the .t file. For
example:

$ hg push
pushing to ssh://user@dummy/$TESTTMP/repos/test-repo
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files

If the expected output differs from actual, the Mercurial test harness will print a diff of the changes.

.t tests are very useful for testing the behavior of command line programs.

Unless you are testing a headless Python module, you should probably be writing t tests.

Python APIs and Helper Scripts

Tests often want to instantiate services and interact with them. To facilitate this, there are various Python APIs and
helper scripts.

The Python APIs are all available as part of the vcttesting package. There is typically a subpackage or module for each
service you may want to interact with.

2.1. Developer Guide 11

https://www.mercurial-scm.org/wiki/WritingTests

Mozilla Version Control Tools, Release 0

To facilitate testing from t tests, there are various command line tools for interacting with specific services. For
example, the bugzilla tool allows you to start up and stop Bugzilla instances and perform common actions against
them, such as create a bug.

These APIs and scripts exist only to support testing. Their APIs and arguments are not considered stable. They should
not be relied on outside the context of the testing environment.

The CLI tools all use mach for command dispatching. Simply run <tool> help to see a list of what commands are
available.

2.1.5 Jenkins Continuous Integration

This repository is continuously tested via Jenkins. You can find the canonical Jenkins job at https://ci.mozilla.org/job/
version-control-tools/.

The Jenkins test environment is configured such that it can be executed by anyone, anywhere.

The testing/jenkins directory contains everything you need to reproduce the canonical Jenkins job.

In that directory are the following files:

Vagrantfile Defines the virtual machine used to run test automation.

run-main.py A script used to run the tests. This is what you’ll configure your Jenkins job to execute to run the job.

run.sh Main script that runs inside the virtual machine to run test automation. This is invoked by run-main.py.

Configuring Jenkins

The Jenkins build only needs to consist of a single step: a shell script that executes:

testing/jenkins/run-main.py

For post-build actions, you have a number of options.

You can Publish Cobertura Coverage Report by using **/coverage/coverage.xml for the Cobertura xml
report pattern.

You can Publish JUnit test result reports by using coverage/results.xml as the Test Reports XML value.

You can Publish coverage.py HTML reports by setting coverage/html as the Report directory.

You can Publish HTML Reports containing the generated Sphinx documentation by setting sphinx-docs/html as
the HTML directory to archive and setting the Index Page to index.html.

2.1.6 Docker

Our development and test environment uses Docker extensively. The main goal of Docker is to facilitate developing
and testing code in an environment that is as close to production as possible.

Image Management

We manage Docker images differently than most. We don’t use Docker in production (yet). But, we also want our
Docker images to match the server environment as closely as possible. If we were to use Dockerfiles to maintain
the Docker environment and something not Docker to manage the servers, we would have duplication of effort and
divergence between Docker and production and this would undermine the effectiveness of the Docker environment for
mimicking production.

12 Chapter 2. Table of Contents

https://ci.mozilla.org/job/version-control-tools/
https://ci.mozilla.org/job/version-control-tools/

Mozilla Version Control Tools, Release 0

Instead of maintaining a Dockerfile for each image, we instead prefer to maintain Dockerfiles for base, bare bones
images configured with Ansible. Then, we create and update Docker images by running an Ansible playbook on this
base image.

2.2 Mercurial Customizations

This repository contains numerous customizations to the Mercurial version control tool.

2.2.1 Extensions

This repository contains a number of Mercurial extensions. Each is described in the sections below.

All extensions are located under the hgext/ subdirectory.

firefoxtree

The firefoxtree extension makes working with the various Firefox repositories much more pleasant.

For more, read it’s documentation.

mozext

mozext is a Swiss Army Knife for Firefox development. It provides a number of features:

• It defines aliases for known Firefox repositories. You can do hg pull central, etc.

• It provides a mechanism for tracking each repository via bookmarks, allowing you to more easily operate a
unified repository.

• Changes to Python files are automatically checked for style.

• Pushlog data is synchronized to a local database.

• Bug data is extracted from commit messages and stored in a database.

• Many revision set and template functions are added.

If you are looking to turn Mercurial into a more powerful query tool or want to maintain a unified repository, mozext
is very valuable.

This extension lives under hgext/mozext.

serverlog

The serverlog extension hacks up some Mercurial internals to record forensics that are useful for Mercurial server
operators.

2.2.2 Hooks

The hghooks directory contains a number of Mercurial hooks used by Mozilla projects.

The content of this directory originally derived from its own repository. Changesets e11fee681380 through
1f927bcba52c contain the import of this repository.

2.2. Mercurial Customizations 13

https://www.mercurial-scm.org/

Mozilla Version Control Tools, Release 0

This directory has its origins in the operation of the Mercurial server at Mozilla. It is an eventual goal to restructure
the hooks to be usable on both client and server.

Available Hooks

changelog_correctness.py

Older versions of Mercurial had a bug where the set of modified files stored in the commit object were incomplete.
Operations that relied on this cached set of changed files (hooks, some revset queries, log) could have inaccurate output
if a buggy commit was present.

This hook looks for the presence of buggy metadata and rejects it.

commit-message.py

This hook attempts to enforce that commit messages are well-formed. It is targeted towards the Firefox commit
message standard.

prevent_case_only_renames.py

This hook prevents file renames that only change the case of a file. e.g. renaming foo to FOO would be disallowed.

This hooks exists to prevent issues with case-insensitive filesystems.

prevent_string_changes.py

This hook is used to prevent changes to strings in string frozen release heads without the explicit approval from
l10n-drivers.

prevent_webidl_changes.py

This hook prevents changes to WebIDL files that shouldn’t be made.

All WebIDL changes must be reviewed by a DOM peer and this hook enforces that.

push_printurls.py

This hook prints relevant information about a push that just completed.

It will print the URL of the changesets on https://hg.mozilla.org/. It will also print TreeHerder URLs for Try pushes.

single_head_per_branch.py

This hook enforces that all Mercurial branches contain at most one head.

treeclosure.py

This hook prevents pushes to Firefox repositories that are currently closed.

14 Chapter 2. Table of Contents

https://hg.mozilla.org/

Mozilla Version Control Tools, Release 0

trymandatory.py

This hook enforces the requirement that pushes to the Try repository contain Try job selection syntax.

Hook Development Standards

Hooks are written and loaded into Mercurial as Python modules. This goes against recommendations by the Mercurial
project. However, we do this for performance reasons, as spawning new processes for hooks wastes valuable wall time
during push. (Mercurial recommends against in-process hooks because they don’t make promises about the stability
of the internal API.)

Hooks should be unit tested via .t tests and should strive for 100% code coverage. We don’t want any surprises
in production. We don’t want to have to manually test hooks when upgrading Mercurial. We should have confidence
in our automated tests.

Pre-commit (notably pretxnchangegroup) hooks should filter the strip source and always return success for
these. If an hg strip operation is running, the changesets already got into the repository, so a hook has no business
checking them again.

Any hook change touching a Mercurial API should be reviewed by someone who knows Mercurial internals. You
should default to getting review from gps.

Hooks connecting to external systems or performing process that could be deferred will be heavily scrutinized. We
want hg push operations to be fast. Slow services, networks, or CPU or I/O intensive hooks all undermine that goal.

2.2.3 Creating and Maintaining a Development Environment

In order to run tests for the extensions and hooks, you’ll need to create and activate an isolated environment.

From the root directory of a version-control-tools checkout:

$./create-environment hgdev

This will create a Python virtualenv in venv/hgdev. Assuming all goes well, it will print instructions on how to
activate that environment in your local shell and how to run tests.

If the command fails, a likely culprit is missing system package dependencies.

On Debian/Ubuntu based distros, install required system packages via:

$ apt-get install build-essential python-all-dev sqlite3

On RedHat/CentOS based distros:

$ yum install bzip2 gcc python-devel sqlite

Then try ./create-environment hgdev again. If that fails, this documentation may need updated!

2.3 Headless Repositories

This document describes the architecture and state of Mozilla’s headless repositories.

2.3. Headless Repositories 15

Mozilla Version Control Tools, Release 0

2.3.1 History Lesson

For the longest time, Mozilla operated a special Mercurial repository called Try. When people wanted to schedule
a build or test job against Firefox’s release automation, they would create a special Mercurial commit that contained
metadata on what jobs to schedule. They would push this commit (and its ancestors) to a new head on the Try
repository. Firefox release automation would continuously poll the repository via the pushlog data and would schedule
jobs for new pushes / heads according to the metadata in the special commit.

This approach was simple and worked for a long time without significant issues. Unfortunately, Mercurial (and Git)
have known scaling problems as the number of repository heads approaches infinity. For Mozilla, we start to encounter
problems after a few thousand heads. Things started to get really bad after 10,000 heads or so.

While fixing Mercurial to scale to thousands of heads would be admirable, after talking with Mercurial core developers,
it was apparent that this would be a lot of work and the success rate was not considered high, especially as we started
talking about scaling to 1 million or more heads. The recommended solution was to avoid the mega-headed scaling
problem alltogether and to limit ourselves to a bound number of heads.

2.3.2 Headless Repositories

A headless repository is conceptually a single repository with thousands, but with repository data stored outside the
repository itself.

Clients still push to the repository as before. However, special code on the server intercepts the incoming data and
siphons it off to an external store. A pointer to this external data is stored, allowing the repository to serve up this data
to clients that request it.

Mozilla plans to use headless repositories for Try, which share similar models of many clients writing to a central
server with limited, well-defined clients for that data.

Technical Details

A Mercurial extension on the push server will intercept incoming changegroup data and write a Mercurial bundle of
that data to S3. This is tracked in https://bugzilla.mozilla.org/show_bug.cgi?id=1078916.

A relational database will record information on each bundle - the URL, what changesets it contains, etc. This database
will be written to as part of push by the aforementioned Mercurial extension. This is tracked in https://bugzilla.mozilla.
org/show_bug.cgi?id=1078920.

A Mercurial extension on the hgweb servers will serve requests for S3-backend changesets. Clients accessing the
server will be able to request data in S3 as if it is hosted in the repository itself. This is tracked in https://bugzilla.
mozilla.org/show_bug.cgi?id=1078918.

The hgweb servers will also expose an HTTP+JSON API that matches the existing pushlog API in order to allow
clients to poll for new changes without having to change their client-side code.

Initially, a one-off server to run the headless repositories will be created. It will have one-off Mercurial versions,
software stack, etc. We may revisit server topology once things are rolled out and proved. This is tracked in https:
//bugzilla.mozilla.org/show_bug.cgi?id=1057148.

Clients that pull Try data will need to either upgrade to Mercurial 3.2 or install a custom extension that facilitates
following links to S3 bundles. This is because we plan to use Mercurial’s bundle2 exchange format and a feature we
want to use is only available in Mercurial 3.2.

Low-Level Details

1. Client performs hg push ssh://hg.mozilla.org/try

16 Chapter 2. Table of Contents

https://bugzilla.mozilla.org/show_bug.cgi?id=1078916
https://bugzilla.mozilla.org/show_bug.cgi?id=1078920
https://bugzilla.mozilla.org/show_bug.cgi?id=1078920
https://bugzilla.mozilla.org/show_bug.cgi?id=1078918
https://bugzilla.mozilla.org/show_bug.cgi?id=1078918
https://bugzilla.mozilla.org/show_bug.cgi?id=1057148
https://bugzilla.mozilla.org/show_bug.cgi?id=1057148

Mozilla Version Control Tools, Release 0

2. Mercurial queries remote and determines what missing changesets needs to be pushed.

3. Client streams changeset data to server.

4. Server applies public changesets to the repository and siphons draft changesets into a new bundle.

5. Public changesets are committed to the repository. Draft changesets are uploaded to S3 in a bundle file.

6. Server records metadata of S3-hosted files and push info into database.

2.4 Mercurial for Mozillians

Want to learn how to get the most from Mercurial at Mozilla? You’ve come to the right place!

2.4.1 Installing Mercurial

Having a modern Mercurial installed is important. Features, bug fixes, and performance enhancements are always
being added to Mercurial. Staying up to date on releases is important to getting the most out of your tools.

Note: Mercurial has a strong commitment to backwards compatibility.

If you are scared that upgrading will break workflows or command behavior, don’t be. It is very rare for Mercurial to
intentionally break backwards compatibility.

Recommended Versions

Mozilla recommends running the latest stable release of Mercurial. The latest stable release is always listed at https:
//www.mercurial-scm.org/. As of October 2018, the latest stable release is 4.7.2.

Danger: Mercurial versions before 3.7.3 have known vulnerabilities that can lead to arbitrary code execution
when pulling from repositories.

Mercurial versions before 4.4.1 have known vulnerabilities that can result in arbitrary client-side code execution
when processing subrepositories.

Mercurial versions before 4.6.1 have possible vulnerabilities that could result in arbitrary client-side code execution
when pulling from repositories.

Mercurial versions before 4.7.2 have a possible out-of-bounds memory access that could result in security issues.

Version 4.7.2 or newer should always be used.

Mercurial makes a major X.Y release every three months, typically around the first of the month. Release months are
February, May, August, and November. A X.Y.Z point release is performed each month after or as needed (if a severe
issue is encountered).

If you are conservative about software updates, it is OK to wait to upgrade until the X.Y.1 point release following a
major version bump.

2.4. Mercurial for Mozillians 17

https://www.mercurial-scm.org/
https://www.mercurial-scm.org/

Mozilla Version Control Tools, Release 0

Installing on Windows

If you are a Firefox developer, you should install Mercurial indirectly through MozillaBuild. Mercurial can be up-
graded within MozillaBuild by running pip install --upgrade Mercurial.

If you are not a Firefox developer, download a Windows installer direct from the Mercurial project.

Installing on OS X

Mercurial is not installed on OS X by default. You will need to install it from a package manager or install it from
source.

mach bootstrap

If you have a clone of a Firefox repository, simply run mach bootstrap to install/upgrade Mercurial. Keep in
mind this will install all packages required for Firefox development. If this is not wanted, follow a set of instructions
below.

Homebrew

Homebrew typically keeps their Mercurial package up to date. Install Mercurial through Homebrew by running:

$ brew install mercurial

You may want to run brew update first to ensure your package database is up to date.

MacPorts

MacPorts typically keeps their Mercurial package up to date. Install through MacPorts by running:

$ port install mercurial

From Source

See the section below about how to install Mercurial from source.

Installing on Linux, BSD, and other UNIX-style OSs

The instructions for installing Mercurial on many popular distributions are available on Mercurial’s web site. However,
many distros don’t keep their Mercurial package reasonably current. You often need to perform a source install.

Installing from Pip

Mercurial source packages can be installed via pip - Python’s preferred package management tool.

Installing Mercurial via pip is simple:

$ pip install Mercurial

18 Chapter 2. Table of Contents

https://wiki.mozilla.org/MozillaBuild
https://www.mercurial-scm.org/downloads
https://www.mercurial-scm.org/downloads

Mozilla Version Control Tools, Release 0

To upgrade Mercurial:

$ pip install --upgrade Mercurial

By default, pip install may try to write to /usr/local or /usr/lib or other parts of your system that
require elevated permissions to write to. To perform an install into your user directory:

$ pip install --user Mercurial

That may install Mercurial to a directory not in PATH, such as ~/.local/bin. You may need to adjust your
shell’s startup file to add this directory to PATH. To see exactly where it installs things in --user mode, run pip
show Mercurial. There will be a line like Location: /home/myuser/.local/lib/python2.7/
site-packages. The hg executable is likely in a bin directory at the same level of the lib/ directory.

Installing from Source

Installing Mercurial from source is simple and should not be dismissed because it isn’t coming from a package.

Download a source archive from Mercurial. Alternatively, clone the Mercurial source code and check out the version
you wish to install:

$ hg clone https://www.mercurial-scm.org/repo/hg
$ cd hg
$ hg up 4.7.2

Once you have the source code, run make to install Mercurial:

$ make install

If you would like to install Mercurial to a custom prefix:

$ make install PREFIX=/usr/local
$ make install PREFIX=/home/gps

Note: Mercurial has some Python C extensions that make performance-critical parts of Mercurial significantly faster.
You may need to install a system package such as python-dev to enable you to build Python C extensions.

Tip: Are you concerned about a manual Mercurial install polluting your filesystem? Don’t be.

A Mercurial source install is fully self-contained. If you install to a prefix, you only need a reference to the PREFIX/
bin/hg executable to run Mercurial. You can create a symlink to PREFIX/bin/hg anywhere in PATH and Mer-
curial should just work.

Verifying Your Installation

To verify Mercurial is installed properly and has a basic configuration in place, run:

$ hg debuginstall

If it detects problems, correct them.

If you have a clone of the Firefox repository, you are highly encouraged to run mach vcs-setup to launch an interactive
wizard that will help you optimally configure Mercurial for use at Mozilla.

2.4. Mercurial for Mozillians 19

https://www.mercurial-scm.org/downloads

Mozilla Version Control Tools, Release 0

Reasons to Upgrade

General Advice

Mercurial releases tend to be faster and have fewer bugs than previous releases. These are compelling reasons to stay
up to date.

Avoid Mercurial versions older than 3.7.3 due to issues below.

Security Issues

Versions of Mercurial before 3.7.3 are vulnerable to multiple security issues that can lead to executing arbitrary code
when cloning or pulling from repositories. Avoid versions older than 3.7.3!

Cloning and Pulling Performance

Mercurial 4.1 introduced supported for compression data over the wire protocol with zstandard. This is substantially
faster than zlib and can result in faster clones and pulls due to faster compression and fewer bytes transferred over the
wire.

Mercurial 3.6 contains a number of enhancements to performance of cloning and pull operations, especially on Win-
dows. Clone times for mozilla-central on Windows can be several minutes faster with 3.6.

Revset Performance

Mercurial 3.5 and 3.6 contained a number of performance improvements to revision sets. If you are a user of hg wip
or hg smartlog, these commands will likely be at least 4x faster on Mercurial 3.6.

Revsets are used internally by Mercurial. So these improvements result in performance improvements for a hodge-
podge of operations.

Tags Cache Performance

Mercurial 3.4 contains improvements to the tags cache that prevent it from frequently doing CPU-intensive computa-
tions in some workflows.

Important: Users of evolve will have horrible performance due to the tags cache implementation in versions older
than 3.4 and should upgrade to 3.4+.

Performance Issues with Large Repositories

Mercurial 3.0 through 3.1.1 contained a significant performance regression that manifests when cloning or pulling tens
of thousands of changesets. These versions of Mercurial should be avoided when interacting with large repositories,
such as mozilla-central.

Mercurial 3.3 introduced a class of performance regressions most likely encountered as part of running hg blame or
hg graft. The regressions are largely fixed in 3.4.

20 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

CVE-2014-9390

Mercurial versions older than 3.2.3 should be avoided due to a security issue (CVE-2014-9390) impacting Windows
and OS X users.

Supporting Old Versions

Mozilla has written a handful of Mercurial extensions. Supporting N versions of Mercurial is easier than supporting
N+1 versions, especially as Mercurial’s API is rapidly evolving. It is extra work to support old versions when new
versions work just fine.

Newer Wire Protocol

Mercurial 3.5 featured a new wire protocol that performs pushes and pulls more efficiently.

Cloning from Pre-Generated Bundle Files

Mercurial 3.6 supports transparently cloning from pre-generated bundle files. When you clone from hg.mozilla.org,
many of the larger repositories will be served from a CDN. This results in a faster and more reliable clone.

Mercurial 4.1 will download zstandard-compressed bundles from hg.mozilla.org by default. These are substantially
smaller than gzip-based bundles.

2.4.2 Installing and Configuring Extensions

A vanilla install of Mercurial does not have many features. This is an intentional choice by Mercurial to keep the base
install simple and free of foot guns.

Guided Installation of Extensions

If you have a copy of the Firefox source repository, you can run ./mach vcs-setup to run an interactive wizard that will
guide you through the process of configuring Mercurial.

Important: mach vcs-setup is the recommended way to configure Mercurial for use at Mozilla. The sections below
effectively duplicate the work that mach vcs-setup does for you.

Installing Extensions

To install an extension, you’ll need to add a line to your Mercurial configuration file.

As a user, you care about the following configuration files:

1. Your global hgrc

2. A per-repository hgrc

2.4. Mercurial for Mozillians 21

Mozilla Version Control Tools, Release 0

Your user-global configuration file is ~/.hgrc. Settings in this file apply to all hg commands you perform every-
where on your system (for your current user).

Each repository that you clone or initialize has an optional .hg/hgrc file that provides repository-specific configu-
rations.

Mercurial starts by loading and applying settings from global configuration files and then overlays configurations from
each lesser-scoped files.

Tip: To learn more about Mercurial configuration files, run hg help config.

To install an extension, you add a line under the [extensions] section of a config file like the following:

[extensions]
foo=path/to/extension

This is saying activate the **foo* extension whose code is present at path/to/extension*.

Core Extensions That Almost Everyone Wants

Mercurial ships with a number of built-in extensions. Of these, every user will almost always want to install the
following extensions:

fsmonitor Monitor the filesystem for changes using so operations querying filesystem state complete faster.

Important: fsmonitor is highly recommended when interacting with the Firefox repository. It will make Mercurial
commands faster.

Since core extensions are bundled with Mercurial, they have a special syntax that makes them easier to install:

[extensions]
fsmonitor=

Core Extensions to Perform History Rewriting

Out of the box, Mercurial only allows commits operations to be additive. If you make a mistake, the solution is to
create a new commit that fixes it. You can’t rewrite old commits. You can’t change the order of existing commits. You
can’t change the shape of the DAG of the commits.

These operations all have something in common: they rewrite history.

Note: Mercurial doesn’t allow history rewriting by default because it is a major foot gun for people new to version
control. A potential side-effect of history rewriting is data loss or confusion due to loss of state. Mercurial believes
that these risks should be opt-in and has thus shipped without any history rewriting features enabled by default.

Mercurial ships with a number of built-in extensions that enable history rewriting:

histedit Enables the hg histedit command, which brings up a text editor listing commits, allowing you to change
order and specify actions to perform.

The functionality is roughly equivalent to git rebase -i.

rebase Enables the hg rebase command, which allows you to splice commits across different chains in the DAG.

22 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

strip Enables you to delete changesets completely.

Core Extensions to Enable Different Workflows

Mercurial ships with some extensions that enable alternate workflows. These include:

shelve Enables uncommitted work to be saved to a standalone file without being committed to the repository.

chg

chg is a C wrapper for the hg command. Typically, when you type hg, a new Python process is created, Mercurial is
loaded, and your requested command runs and the process exits.

With chg, a Mercurial command server background process is created that runs Mercurial. When you type chg, a C
program connects to that background process and executes Mercurial commands.

chg can drastically speed up Mercurial. This is because the overhead for launching a new Python process is high
(often over 50ms) and the overhead for loading Mercurial state into that process can also be high. With chg, you
pay this cost once and all subsequent commands effectively eliminate the Python and Mercurial startup overhead. For
example:

$ time hg --version
real 0m0.118s
user 0m0.100s
sys 0m0.015s

$ time chg --version
real 0m0.012s
user 0m0.000s
sys 0m0.004s

$ time hg export
real 0m0.137s
user 0m0.093s
sys 0m0.042s

$ time chg export
real 0m0.034s
user 0m0.000s
sys 0m0.004s

Here, we see ~100ms wall time improvement with chg activated. That may not sound like a lot, but you will notice.

If you have installed Mercurial through a package manager (such as Homebrew or APT) you may already have chg
installed. For more information, see here.

3rd Party Extensions You Should Highly Consider

evolve

The evolve extension opens up new workflows that harness Mercurial’s ability to record how changesets evolve over
time.

Typically, when history is rewritten, new commits are created and the old ones are discarded. With the evolve
extension enabled, Mercurial instead hides the old commits and writes metadata holding the relationship between old

2.4. Mercurial for Mozillians 23

https://www.mercurial-scm.org/repo/hg/file/tip/contrib/chg/README
https://www.mercurial-scm.org/wiki/CHg
https://www.mercurial-scm.org/wiki/EvolveExtension

Mozilla Version Control Tools, Release 0

and new commits. This metadata can be transferred between clients, allowing clients to make intelligent decisions
about how to recover from rewritten history. For example, if a force push is performed, a client will know exactly what
rebase to perform to mimic what was done elsewhere.

The evolve extension also enables useful Mercurial commands such as hg previous, hg next, and hg
amend (which is a shortcut for hg commit --amend).

2.4.3 The DAG and Mercurial

Distributed version control systems (DVCS) like Mercurial (and Git) utilize a directed acyclic graph (DAG) for repre-
senting commits. This DAG is how the history of a repository is stored and often represented.

To help understand how this works, we’ll be using Mercurial commands to show and manipulate the DAG.

We start by creating an empty Mercurial repository with an empty graph:

$ hg init repo
$ cd repo

The Mercurial command for inspecting the repository history (and the DAG by extension) is hg log. Let’s run it on
our empty repository:

$ hg log -G

No output. This is confirmation that the graph is empty.

Note: We use -G throughout this article because it is necessary to print a visual representation of the DAG.

Adding Nodes

We’ll need to create nodes to make our DAG interesting. The way we do this is by committing. But first, we need
something to commit. Let’s create a file:

$ echo 1 > file

Then we tell Mercurial that we’re interested in storing the history of this file:

$ hg add file

We then use hg commit to create a new node (changeset in Mercurial parlance) and add it to the DAG:

$ hg commit -m A

(-m A says to use A for the commit message).

Now let’s take a look a the DAG:

$ hg log -G -T '{desc}'
@ A

Note: -T '{desc}' tells Mercurial to only print the description or commit message from the changeset/node.
Without it, output would be much more verbose.

24 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

It looks like we have a single node - denoted by @ and A.

This graph / repository state isn’t very interesting. So, we perform another commit:

$ echo 2 >> file
$ hg commit -m B

And then inspect the DAG:

$ hg log -G -T '{desc}'
@ B
|
o A

This is slightly more interesting!

The B node has been introduced. That is pretty obvious.

A has its node represented by a o. B has its node represented by @. Mercurial uses @ to represent the node currently
attached to the working directory. This will be discussed later.

The first column has grown a vertical pipe character (|) between the two entries. In graph terms, this is an edge. While
the visualization doesn’t indicate it, B internally stores a pointer back to A. This constitutes the edge and since the edge
is directional (B to A), that makes the graph directed (the D from DAG).

Directed graphs borrow terminology from biology to represent relationships between nodes:

parent node A node that came before another (is referred to by another node).

child node A node that derives directly from another.

root node A node that has no parents.

head node A node that has no children.

descendants All the children, the children’s children, the children’s children’s children, and so on of a node.

ancestors The parents, parents’ parents, parents’ parents’ parents, and so on of a node.

In our graph so far:

• A is the parent of B

• B is a child of A

• A is a root

• B is a head

• The descendants of A are just B.

• The ancestors of B are just A.

If you don’t understand this, let’s try committing a few more nodes to help your understanding.:

$ echo 3 >> file
$ hg commit -m C
$ echo 4 >> file
$ hg commit -m D

$ hg log -G -T '{desc}'
@ D
|
o C

(continues on next page)

2.4. Mercurial for Mozillians 25

Mozilla Version Control Tools, Release 0

(continued from previous page)

|
o B
|
o A

A is still the root node. Since B has children, it is no longer a head. Instead, D is now our head node.

If all you do is hg commit like we’ve been doing so far, your repository’s DAG will be a linear chain of nodes, just
like we have constructed above. 1 head. Every node has 1 parent (except the root).

Important: The important takeaway from this section is that the history of Mercurial repositories is stored as a
DAG. hg commit creates a changeset and appends a node to a graph. A DAG node and a Mercurial changeset are
effectively the same thing.

Nodes are Hashes of Content

Up to this point, we’ve been using our single letter commit messages (A, B, etc) to represent nodes in our DAG. This
is good for human understanding, but it hides an important detail of how Mercurial actually works.

Mercurial uses a SHA-1 digest to identify each node/changeset in the repository/DAG. The SHA-1 digest is obtained
by hashing the content of the changeset.

Essentially, Mercurial changesets consist of various pieces of data including but not limited to:

1. The parent node(s)

2. The set of files and their state

3. The author

4. The date

5. The commit message

Mercurial assembles all these pieces of data in a well-defined manner, feeds the result into a SHA-1 hasher, and uses
the digest of the result as the node/changeset ID.

SHA-1 digests are 20 bytes or 40 hex characters. They look like
835dbd9444dbed0cdc2ca27e23839f05a58e1dc1. For readability, these are almost always abbrevi-
ated to 12 characters in user-facing interfaces. e.g. 835dbd9444db.

We can ask Mercurial to render these SHA-1 digests instead of the commit messages:

$ hg log -G -T '{node}'
@ 2bf9b23b2d0379540038866a72699a8ce5e92e84
|
o 0f165760af41ddde6470860088f421c1efcc5a5f
|
o 7175417717e87c88e4cf61ab2f76f2c54c76fa4b
|
o 8febb2b7339e5843832ab893ca2a002cd4394a03

Or we can ask for the short versions:

$ hg log -G -T '{node|short} {desc}'
@ 2bf9b23b2d03 D
|

(continues on next page)

26 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

(continued from previous page)

o 0f165760af41 C
|
o 7175417717e8 B
|
o 8febb2b7339e A

Note: We start to use some more capabilities of Mercurial’s templates feature. This allows output from Mercurial
commands to be customized. See hg help templates for more.

Because SHA-1s (even their short versions) are difficult to remember, we’ll continue using commit messages and
single letters throughout this article to aid comprehension.

Important Properties from Using Hashing

Since node IDs are derived by hashing content, this means that changing any of that content will result in the node ID
changing.

Change a file: new node ID.

Change the commit message: new node ID.

Change the parent of a node: new node ID.

Changing the content of a changeset and thus its node ID is referred to as history rewriting because it changes the
history of a repository/DAG. History rewriting is an important topic, but it won’t be discussed quite yet. The important
thing to know is that if you change anything that’s part of the changeset, the node ID changes.

Moving Between Nodes

Looking at the state of our Mercurial repository on the filesystem, we see two entries:

$ ls -A
.hg/
file

The .hg directory contains all the files managed by Mercurial. It should be treated as a black box.

Everything else in this directory (currently just the file file and the current directory) is referred to as the working
directory or working copy (both terms used interchangeably).

The working directory is based on the state of the files in a repository at a specific changeset/node. We say based on
because you can obviously change file contents. But initially, the working directory matches exactly what is stored in
a specific changeset/node.

The hg update (frequently hg up) command is used to change which node in the DAG the working directory
corresponds to.

If you hg up 7175417717e8, the working directory will assume the state of the files from changeset/node
7175417717e8.... If you hg up 2bf9b23b2d03, state will be changed to 2bf9b23b2d03....

The ability to move between nodes in the DAG introduces the possibility to. . .

2.4. Mercurial for Mozillians 27

Mozilla Version Control Tools, Release 0

Creating DAG Branches

Up until this point, we’ve examined perfectly linear DAGs. As a refresher:

$ hg log -G -T '{node|short} {desc}'
@ 2bf9b23b2d03 D
|
o 0f165760af41 C
|
o 7175417717e8 B
|
o 8febb2b7339e A

Every node (except the root, A/8febb2b7339e) has 1 parent node. And the graph as a whole has a single head
(D/2bf9b23b2d03).

Let’s do something a bit more advanced. We start by switching the working directory to a different changeset/node:

$ hg up 7175417717e8
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

$ hg log -G -T '{node|short} {desc}'
o 2bf9b23b2d03 D
|
o 0f165760af41 C
|
@ 7175417717e8 B
|
o 8febb2b7339e A

(Note how @ - the representation of the active changeset/node in the working directory - moved from D to B)

Now let’s commit a new changeset/node:

$ echo 5 >> file
$ hg commit -m E
created new head

That created new head message is a hint that our DAG has changed. Can you guess what happened?

Let’s take a look:

$ hg log -G -T '{node|short} {desc}'
@ 4a3687e9313a E
|
| o 2bf9b23b2d03 D
| |
| o 0f165760af41 C
|/
o 7175417717e8 B
|
o 8febb2b7339e A

B now has multiple direct children nodes, C and E. In graph terminology, we refer to this as a branch point.

E has no children, so it is a head node (D is still a head node as well).

Because the visualization of the graph can resemble a tree (from nature, not your computer science textbooks), small
protrusions from the main trunk are referred to as branches from the perspective of the DAG. (Mercurial has over-
loaded branch to convey additional semantics, so try not to confuse a DAG branch with a Mercurial branch.)

28 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

The created new head message was Mercurial telling us that we created not only a new DAG head but also a new DAG
branch.

Because your commit is taking the repository in a different direction (very non-scientific word), this act of creating
new DAG branches is sometimes referred to as divergence or diverging.

DAG branches turn out to be an excellent way to work on separate and isolated units of change. These are often
referred to as feature branches because each DAG branch consists of a specific feature. For more, see Workflows.

It’s worth noting that hg commit always produces a new head node because the node being created never has any
children. However, it may not create a new DAG branch: a new DAG branch is only created when the parent node of
the commit isn’t a head node.

Before we go on let’s commit a new changeset on top of E to make the DAG branch more pronounced:

$ echo 6 >> file
$ hg commit -m F

$ hg log -G -T '{node|short} {desc}'
@ da36621d7a94 F
|
o 4a3687e9313a E
|
| o 2bf9b23b2d03 D
| |
| o 0f165760af41 C
|/
o 7175417717e8 B
|
o 8febb2b7339e A

Merging DAG Branches

Now that we have multiple DAG branches, it is sometimes desirable to merge them back into one. The Mercurial
command for performing this action is hg merge.

Let’s change our working directory to the changeset that we want to merge into. We choose D, since it was our original
head.:

$ hg up 2bf9b23b2d03
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

Now we tell Mercurial to bring the changes from F’s head into D’s:

$ hg merge da36621d7a94
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)

$ hg commit -m G

Visualizing the result:

$ hg log -G -T '{node|short} {desc}'
@ 19c6c94d7bb2 G
|\
| o da36621d7a94 F
| |
| o 4a3687e9313a E

(continues on next page)

2.4. Mercurial for Mozillians 29

Mozilla Version Control Tools, Release 0

(continued from previous page)

| |
o | 2bf9b23b2d03 D
| |
o | 0f165760af41 C
|/
o 7175417717e8 B
|
o 8febb2b7339e A

G/19c6c94d7bb2 is what is referred to as a merge commit. It is the result of a commit operation that merged 2
nodes. From the perspective of the DAG, it is a node with 2 parents, not 1.

Conclusion

These are the basics of how Mercurial uses a directed acyclic graph (DAG) to represent repository history.

If you would like to learn more about how distributed version control systems (like Mercurial) use DAGs, please read
this article.

For more on workflows that build upon this knowledge, see Workflows.

2.4.4 Workflows

Mercurial is a flexible tool that allows you to choose from several workflows and variations thereof.

Important: Before reading on, it is important to have a firm grasp on the concepts described in The DAG and
Mercurial. That article describes how Mercurial models repository history as a directional acyclic graph (DAG) and
understanding of this is critical for many workflows.

Feature Branches and Head-Based Development

As mentioned in The DAG and Mercurial, DAG branches are commonly used to work on isolated units of change.
DAG branches used this way are called feature branches because each DAG branch tracks a specific feature or line of
work.

Another way to think about this is as head-based development. Each DAG branch has its own head node (this is a
basic property of directed acyclic graphs). So, working on different DAG branches is effectively working on different
heads.

The general way feature branches/head-based development work is:

1. Set your starting point via hg up <starting node>.

2. Modify files

3. hg commit

4. Repeat #2 and #3 until work is done

5. Integrate DAG branch somehow (typically a rebase or merge)

To help understand this, let’s start with the following state:

30 Chapter 2. Table of Contents

http://ericsink.com/entries/dvcs_dag_1.html

Mozilla Version Control Tools, Release 0

$ hg log -G -T '{node|short} {desc}'
@ 2bf9b23b2d03 D
|
o 0f165760af41 C
|
o 7175417717e8 B
|
o 8febb2b7339e A

The working directory is based on D. But we don’t like the state of D, so we decide to start working from B instead:

$ hg up 7175417717e8
$ echo changes > file
$ hg commit -m E
created new head
$ echo 'more changes' > file
$ hg commit -m F

You get bored working on that feature. Or, you run into some obstacles and want to try a fresh approach. So, you
decide to start a new feature branch:

$ hg up 7175417717e8
$ echo 'new feature' > file
$ hg commit -m G
$ echo 'more new features' > file
$ hg commit -m H

Then you have a revelation about the first feature branch you were working on and go back to make a change:

$ hg up 82123e512a06
$ echo revelation > file
$ hg commit -m I

Our repository now looks like:

$ hg log -G -T '{node|short} {desc}'
@ bcb7c3592ba2 I
|
| o 2ca760d1e4fe H
| |
| o d6248a455a1b G
| |
o | 82123e512a06 F
| |
o | bed01724d682 E
|/
| o 2bf9b23b2d03 D
| |
| o 0f165760af41 C
|/
o 7175417717e8 B
|
o 8febb2b7339e A

To the uninitiated, this view can look complicated because it kind of is. You’ve got a number of commits and lines
going every which way. And, you can imagine how complicated things can become if you are working on several
heads and/or the repository history is large and/or fast moving. We need tools beyond hg log -G to help us sort
through these commits.

2.4. Mercurial for Mozillians 31

Mozilla Version Control Tools, Release 0

Finding Heads

The hg heads command can be used to quickly see all repository heads. Running it on our current repository will
reveal something like:

$ hg heads
changeset: 8:bcb7c3592ba2
tag: tip
parent: 5:82123e512a06
user: Gregory Szorc <gps@mozilla.com>
date: Wed Aug 12 12:57:28 2015 -0700
summary: I

changeset: 7:2ca760d1e4fe
user: Gregory Szorc <gps@mozilla.com>
date: Wed Aug 12 12:52:26 2015 -0700
summary: H

changeset: 3:2bf9b23b2d03
user: Gregory Szorc <gps@mozilla.com>
date: Wed Aug 12 11:57:08 2015 -0700
summary: D

Tip: hg heads is roughly equivalent to hg log -r 'head()', which uses the head() revision set function
to only select head changesets/nodes.

hg heads can be useful to get a quick overview of all unmerged DAG branches. If the canonical repository only
has a single head, then hg heads will be a good approximation for what work hasn’t been merged yet. But if the
canonical repository has many heads (this is frequently the case), then hg heads may lose some of its utility because
it will display all heads, not just the ones you care about.

Read on for some ways to deal with this.

Labeling

Up until this point, all our Mercurial commands were interacting with the 12 character hex abbreviation of the full
SHA-1 changeset. These values are effectively random, opaque, and difficult to memorize. It can be annoying and
possibly difficult for humans to grasp with them. This is why Mercurial provides facilitites for labeling heads and
changesets. There are many forms of labels in Mercurial.

Bookmarks

Bookmarks are specially behaving labels attached to changesets. When you commit when a bookmark is active, the
active label/bookmark automatically moves to the just-committed changeset.

For more on bookmarks, see Using Bookmarks.

Bookmark users may find the hg bookmarks command useful, as it prints a concise summary of all bookmarks.
This is arguably a better version of hg heads, which we learned about above. However, a downside of hg
bookmarks is that it only shows the changesets with bookmarks: it doesn’t show other changesets in that head
or the overall DAG. For that, we’ll need more powerful tools. Keep reading to learn more.

32 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

Branches

Mercurial branches (not to be confused with generic DAG branches) are a more heavyweight label that can be applied
to changesets. Unlike bookmarks whose labels move as changesets are committed, branches are stored inside the
changeset itself and are permanent.

When you make a Mercurial branch active, all subsequent commits will forever be associated with that branch.

Branches are useful for long-running heads, such as tracking releases. However, their utility for short-lived feature de-
velopment is widely considered to be marginal. And for large repositories, the presence of hundreds or even thousands
of branches over time or from hundreds of developers can lead to a lot of clutter and confusion.

Important: The use of Mercurial branches for feature development is highly discouraged. For Firefox, Mercurial
branches are never used for tracking features.

Because the use of Mercurial branches is discouraged, we won’t describe how they are used.

MQ

Mercurial Queues (MQ) is a workflow extension that focuses on interacting with stacks of labeled patches. Contrast
this with head-based workflows, where you are interacting with nodes and heads on the repository DAG.

Some like MQ because it hides the complexity of the DAG. It takes a simple and easily comprehended approach to
working on things. However, it also has numerous setbacks:

• MQ doesn’t perform 3-way merges and thus merge conflicts (in the form of .rej files) are much more common.

• Managing labels for every single changeset can be cumbersome, introducing overhead that encourages fewer,
larger, and harder-to-review commits.

• Performance on large repositories can be horrible.

• The extension isn’t actively developed and bugs often go unfixed.

Important: The Mercurial project doesn’t recommend MQ, especially for new Mercurial users. At Mozilla, we also
recommend not using MQ. Use a head-based workflow instead.

Refining What Changesets are Shown

hg heads, hg bookmarks, hg branches, hg qseries, and other commands meant to summarize common
entities within the repository each suffer from the limitation that they often show too little information. When doing
development, you often want to see all the changesets in a head or want to see the shape of the DAG. We need a way
to view the important information from the aforementioned commands, without the overload that hg log -G gives
us. Fortunately, Mercurial has an answer.

The output from the hg log command can be highly configurable via the use of revision sets (revsets) and templates.
The former determines what to show and the latter how to show it.

When we run hg log -G, Mercurial will display information for all changesets and render it according to the default
command line template. As you’ll quickly learn, this is far from an ideal way to find changesets you care about.

For a fast and information rich display of changesets relevant to you - a view on the heads/features you’ve been
working on - we highly recommend the hg wip command described at Customizing Mercurial Like a Pro.

2.4. Mercurial for Mozillians 33

http://jordi.inversethought.com/blog/customising-mercurial-like-a-pro/

Mozilla Version Control Tools, Release 0

To Label or Not to Label

Before we learned about bookmarks, branches, and MQ patches, we learned how to create label-less DAG branches.
Various Mercurial workflows use labels because they are more human friendly than SHA-1 fragments. But, they aren’t
required.

Note: The concept of label-less heads does not exist in Git: Git requires all heads to have a label (a Git branch name)
or the head and the commits unique to it will eventually be deleted via garbage collection.

Because Git requires labels and Mercurial does not, it is accurate to say that Mercurial has lighter weight DAG branches
than Git!

Since Mercurial doesn’t require labels, it raises an interesting question: should you use labels?

The answer, like most things, depends.

Custom and powerful query and rendering tools like the aforementioned hg wip command are sufficient for many
to simply not need labels and to use anonymous, unlabeled changesets and heads for everything. A benefit to this
approach is less overhead interacting with and managing labels: you don’t need to make a bookmark or branch active:
you just update to a changeset, make changes, and commit. You don’t need to clean up labels when you are done. It’s
all very low-level and feels fast. It also contributes to understanding of the DAG and its concepts.

A downside of label-less workflows is you have to interact with SHA-1s or SHA-1 fragments all the time. There is a
lot of copying and pasting of these values in order to run commands. And, this is simply too much for some people.
Some just need human-friendly labels.

2.4.5 Using Bookmarks

The Mercurial project recommends the use of bookmarks for doing development.

At its core, bookmarks are a labeling mechanism. Instead of a numeric revision ID or alphanumeric SHA-1 (frag-
ments), bookmarks provide human-friendly identifiers to track and find changesets or lines of work.

Tip: If you are a Git user, bookmarks are similar to Git branches. Although they don’t behave exactly the same.

Bookmarks and Feature Development

Bookmarks are commonly used to track the development of something - a feature in version control parlance. The
workflow is typically:

1. Create a bookmark to track a feature

2. Commit changes for that feature against that bookmark

3. Land the changes

Bookmarks typically exist from the time you start working on a feature to the point that feature lands, at which time
you delete the bookmark, for it is no longer necessary.

Creating and Managing Bookmarks

Numerous guides exist for using bookmarks. We will not make an attempt at reproducing their work here.

Recommending reading for using bookmarks includes:

34 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

• The official Mercurial wiki

• Bookmarks Kick Start Guide

• A Guide to Branching in Mercurial

The following sections will expand upon these guides.

Getting the Most out of Bookmarks

Use Mercurial 3.2 or Newer

Mercurial 3.2 adds notification messages when entering or leaving bookmarks. These messages increase awareness
for when bookmarks are active.

Integrate the Active Bookmark into the Shell Prompt

If you find yourself forgetting which bookmark is active and you want a constant reminder, consider printing the active
bookmark as part of your shell prompt. To do this, use the prompt extension.

Sharing Changesets

Once you have a changeset (or several!) that you’d like to get checked into a Mozilla repository, you’ll need to share
them with others in order to get them reviewed and landed.

When working with mozilla-central, pushing your changesets to user repositories is the primary method of sharing.
See Managing Repositories for more information about user repositories.

Collaborating / Sharing Bookmarks

Say you have multiple machines and you wish to keep your bookmarks in sync across all of them. Or, say you want
to publish a bookmark somewhere for others to pull from. For these use cases, you’ll need a server accessible to all
parties to push and pull from.

If you have Mozilla commit access, you can create a user repository to hold your bookmarks.

If you don’t have Mozilla commit access or don’t want to use a user repository, you can create a repository on Bit-
bucket.

Warning: The Firefox repository may be larger than what Bitbucket allows you to store. If you want to share
bookmarks for the Firefox repository, a user repository is your best bet.

If neither of these options work for you, you can run your own Mercurial server.

Pushing and Pulling Bookmarks

hg push by default won’t transfer bookmark updates. Instead, you need to use the -B argument to tell Mercurial to
push a bookmark update. e.g.:

2.4. Mercurial for Mozillians 35

https://www.mercurial-scm.org/wiki/Bookmarks
http://mercurial.aragost.com/kick-start/en/bookmarks/
http://stevelosh.com/blog/2009/08/a-guide-to-branching-in-mercurial/#branching-with-bookmarks
https://www.mercurial-scm.org/wiki/PromptExtension
https://developer.mozilla.org/en-US/docs/Creating_Mercurial_User_Repositories

Mozilla Version Control Tools, Release 0

$ hg push -B my-bookmark user
pushing to user
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files
exporting bookmark my-bookmark

Tip: When pushing bookmarks, it is sufficient to use -B instead of -r.

When using hg push, it is a common practice to specify -r <rev> to indicate which local changes you wish to
push to the remote. When pushing bookmarks, -B <bookmark> implies -r <bookmark>, so you don’t need to
specify -r <rev>.

Unlike hg push, hg pull will pull all bookmark updates automatically. If a bookmark has been added or updated
since the last time you pulled, hg pull will tell you so. e.g.:

$ hg pull user
pulling from user
pulling from $TESTTMP/a (glob)
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
updating bookmark my-bookmark

Things to Watch Out For

Mercurial repositories are publishing by default. If you push to a publishing repository, your Mercurial client won’t
let you modify pushed changesets.

As of February 2015, user repository on hg.mozilla.org are non-publishing by default, so you don’t have to worry
about this. However, if you use a 3rd party hosting service, this could be a problem. Some providers have an option
to mark repositories as non-publishing. This includes Bitbucket. If you plan on sharing bookmarks and rewriting
history, be sure you are using a non-publishing repository.

2.4.6 Performing Common Tasks

Revive a Commit That Was Backed Out

Say your repository has the following history:

changeset: 263002:dfc93c68f9c7
user: Gijs Kruitbosch <gijskruitbosch@gmail.com>
date: Mon Dec 22 15:05:06 2014 +0000
summary: Bug 1113299 - hide tab mirroring feature if unavailable, r=jaws

changeset: 263001:268dfa4925ec
user: Brian Grinstead <bgrinstead@mozilla.com>
date: Tue Jan 13 12:25:57 2015 -0800

(continues on next page)

36 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

(continued from previous page)

summary: Backed out changeset 291e3a83a122 (bug 1042619)

changeset: 263000:492134f929e2
user: Tim Nguyen <ntim.bugs@gmail.com>
date: Tue Jan 13 09:51:00 2015 -0500
summary: Bug 1121048 - Add back round corners on perf tool icon glyphs. r=jsantell

Commit 291e3a83a122 was backed out by 263001:268dfa4925ec and you want to revive it, either to reland
it or to work on it again.

hg graft should be used to revive old commits. In this case:

$ hg graft -f 291e3a83a122
grafting 262999:291e3a83a122 "Bug 1042619 - Change 'width x height' letter x to × in
→˓devtools frontend;r=bgrins"
merging browser/devtools/canvasdebugger/canvasdebugger.js
merging browser/devtools/layoutview/view.js
merging browser/devtools/responsivedesign/responsivedesign.jsm

$ hg log
changeset: 263004:3c6672d2df85
tag: tip
parent: 263002:dfc93c68f9c7
user: Aaron Raimist <aaronraimist@protonmail.ch>
date: Tue Jan 13 11:59:01 2015 -0800
summary: Bug 1042619 - Change 'width x height' letter x to × in devtools frontend;
→˓r=bgrins

As you can see, hg graft recreated the original commit. The merging lines in the output above indicate that
Mercurial invoked its merge resolution algorithm to as part of grafting. What this means is that the listed files were
changed between when the commit was originally performed and where the new commit resides. Mercurial was able
to automatically merge the differences. Had it not been able to do so, it would entered the merge resolution workflow
and asked you to run hg graft --continue to finish the graft.

Note: The -f in this example is important: it allows grafting of commits that are already ancestors of their destination.
Without it, Mercurial sees that you are attempting to recreate a commit that has already been applied and will prevent
you from probably shooting yourself in the foot.

If you are familiar with Git, hg graft is roughly equivalent to git cherry-pick.

Upgrading Repository Storage

Mercurial periodically makes changes to its on-disk storage that require a one-time upgrade of repository data to take
advantage of the new storage format. Mercurial doesn’t do this automatically because the backwards compatibility
guarantees of Mercurial say that the version of Mercurial that created a repo should always be able to read from it,
even if common repo operations are performed by a newer version.

You have 2 options for upgrading repository storage:

1. Re-clone the repo

2. Run hg debugupgraderepo

2.4. Mercurial for Mozillians 37

Mozilla Version Control Tools, Release 0

Upgrading Storage via Clone

A fresh Mercurial clone will usually use optimal/recommended storage for the Mercurial version being used. However,
depending on how the clone is performed and where it is cloned from, this may not always work as expected.

To achieve an optimal clone with efficient storage, always clone from https://hg.mozilla.org/ - not from a local
repo. By cloning from hg.mozilla.org, your clone will inherit the optimal storage used by the server. If you clone
from anywhere else, you may inherit sub-optimal storage.

Say you have a copy of mozilla-central in a local mozilla-central directory. Perform a clone-based upgrade by running
the following:

Grab pristine copy of repo.
$ hg clone -U https://hg.mozilla.org/mozilla-central mozilla-central.new

Copy over .hgrc
$ cp mozilla-central/.hg/hgrc mozilla-central.new/.hg/hgrc

Pull your unpublished work from your local clone into the new clone.
$ hg --config phases.publish=false -R mozilla-central.new pull mozilla-central

Now rename/remove your repos as appropriate.

Important: That config adjustment for phases.publish=false is important. Without it, draft changesets will
become public and Mercurial won’t let you edit them. To guard against, it is a good practice to add the following to
your per-repo .hg/hgrc file immediately after a clone:

[phases]
publish = false

If you accidentally publish your draft changesets, you can reset phases by running the following commands:

Reset all phases to draft.
$ hg phase --draft --force -r 0:tip

Synchronize phases from a publishing repo.
$ hg pull https://hg.mozilla.org/...

Upgrading Storage via debugupgraderepo

(Requires Mercurial 4.1 or newer)

Upgrading repository storage in-place is relatively easy: just use hg debugupgraderepo. This command (which
is strictly still an experimental command but shouldn’t corrupt your data) essentially does an in-place hg clone
while applying various data and storage optimizations along the way. The command doesn’t make any permanent
changes until the very end and makes a backup of your original data, so there should be a low risk of data loss.

In its default mode of execution, hg debugupgraderepo simply converts storage to the latest storage format: it
doesn’t heavily process data to optimize it. So, to get the benefits of data optimization (which will shrink the size of
the repo and make operations faster), you need to pass some flags to the command.

The first time you upgrade a repo, run as follows:

$ hg debugupgraderepo --optimize redeltaparent --optimize redeltamultibase --run

38 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

redeltaparent tells Mercurial to recalculate the internal deltas in storage so a logical parent is used. The first time
this runs, it will significantly slow down execution but it can result in significant space savings on a Firefox repos. If
you specify this on a repo where data is already efficiently stored, it is almost a no-op.

redeltamultibase tells Mercurial to calculate for merges against both parents and to use the smallest. This
always adds significant processing time to repos with lots of merges. It can also drastically reduce the repository size
(by several hundred megabytes for Firefox repos).

On a Firefox repository, it could take 2-3 hours to perform data optimizations if the repository isn’t already optimized.
If you clone from hg.mozilla.org, you will get these optimizations automatically because the server performs them.

Analyzing Pushlog Data Offline

The mozext extension replicates pushlog data to a local SQLite database during hg pull operations. The extension
also exposes some revsets and template features that allow querying and formatting of pushlog data.

To enable mozext, add the following to your hgrc:

[extensions]
firefoxtree = /path/to/version-control-tools/hgext/firefoxtree
mozext = /path/to/version-control-tools/hgext/mozext

Then, in a Firefox clone, run an hg pull to grab pushlog data:

$ hg pull central
$ hg pull autoland

Now, you can run revsets to query pushlog data:

Find all changesets initially pushed to autoland
$ hg log -r 'firstpushtree(autoland)' -T '{rev} {node|short} {desc|firstline}\n'

Find revisions that were heads at time of push (this means they should have CI
results available)
$ hg log -r 'pushhead(central)'

2.4.7 firefoxtree Extension

The firefoxtree Mercurial extension enhances the interaction with Firefox repositories.

Background on Multiple Repositories

Firefox developers typically interact with multiple repositories. There is the canonical head of Firefox development,
mozilla-central. There is one landing repositories called autoland autoland. Then there are release repositories like
mozilla-beta, mozilla-release and mozilla-esr*,

All of these repositories share the same initial commit and thus are one logical repository. However, for historical
and continuity reasons, the separate topological heads of this conceptual single repository are all stored in separate
repositories on Mozilla’s servers.

Consolidating the Repositories Locally

Traditionally, Mozilla developers maintain separate clones of each repository. There is thus a one to one mapping
between local and remote repositories. For example, you may have separate mozilla-central and autoland

2.4. Mercurial for Mozillians 39

https://hg.mozilla.org/mozilla-central
https://hg.mozilla.org/integration/autoland
https://hg.mozilla.org/releases/mozilla-beta
https://hg.mozilla.org/releases/mozilla-release

Mozilla Version Control Tools, Release 0

directories/clones to track the different upstream repositories. This practice is grossly inefficient. The shared repository
data is fetched and stored multiple times. This creates more load for the server, occupies more space on disk, and adds
overhead to common tasks such as rebasing from central to autoland.

The firefoxtree extension allows you to easily combine the separate remote repositories into a local, single, unified
repository.

When you hg pull from a known Firefox repository, firefoxtree will automatically create a local-only label corre-
sponding to the name of the remote repository. These labels will manifest as tags. For example:

$ hg pull https://hg.mozilla.org/mozilla-central
pulling from https://hg.mozilla.org/mozilla-central
searching for changes
adding changesets
adding manifests
adding file changes
added 130 changesets with 651 changes to 329 files
(run 'hg update' to get a working copy)

$ hg log -r tip
changeset: 248552:d380166816dd
tag: central
tag: tip
user: ffxbld
date: Sat Nov 08 03:20:23 2014 -0800
summary: No bug, Automated blocklist update from host bld-linux64-spot-144 -
→˓a=blocklist-update

You can see from the output of hg log that changeset d380166816dd has the central tag associated with it.

The following example demonstrates how to pull various Firefox repositories into a single local repository and then
how to navigate between commits.:

$ hg pull https://hg.mozilla.org/integration/autoland
pulling from https://hg.mozilla.org/integration/autoland
searching for changes
adding changesets
adding manifests
adding file changes
added 34 changesets with 140 changes to 113 files (+1 heads)
(run 'hg heads .' to see heads, 'hg merge' to merge)

$ hg up central
327 files updated, 0 files merged, 10 files removed, 0 files unresolved

$ hg log -r .
changeset: 248552:d380166816dd
tag: central
tag: tip
user: ffxbld
date: Sat Nov 08 03:20:23 2014 -0800
summary: No bug, Automated blocklist update from host bld-linux64-spot-144 -
→˓a=blocklist-update

$ hg up autoland
118 files updated, 0 files merged, 2 files removed, 0 files unresolved

$ hg log -r .
changeset: 248586:e021487d1297

(continues on next page)

40 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

(continued from previous page)

tag: autoland
user: Connor <cojojennings@gmail.com>
date: Wed Oct 29 23:58:03 2014 -0400
summary: Bug 575094 - Modify how prefservice is accessed so that it's from the
→˓parent process and not from the child process. Also re-enable test_bug528292_wrap.
→˓js. r=jdm

Tip: If you are familiar with Git, it may help to think of these repository labels as remote refs.

To view a summary of which repositories are on which changesets, run hg fxheads:

$ hg fxheads
248552:d380166816dd central No bug, Automated blocklist update from host bld-linux64-
→˓spot-144 - a=blocklist-update
248586:e021487d1297 autoland Bug 575094 - Modify how prefservice is accessed so that
→˓it's from the parent process and not from the child process. Also re-enable test_
→˓bug528292_wrap.js. r=jdm

Tip: The output of hg fxheads is only current from the last time you pulled from each repository. Given the
frequency of pushes to the Firefox repositories, at least one of your labels will likely be out of date.

Pre-defined Repository Paths

Typically, if you are pulling from multiple remotes, you need to define the names and URLs of those remotes in the
[paths] section of the repository’s .hg/hgrc file. The names and URLs of Firefox repositories are well-known,
so firefoxtree does this for you.

Simply type hg pull <tree> to pull from a known Firefox repository. For example:

$ hg pull central
$ hg pull autoland

Or type hg push <tree> to push to a Firefox repository (need permissions).:

$ hg push autoland

Tip: The registered name aliases should be intuitive. Try a name of a popular Firefox repository. It should just work.
If you get stumped or want to see the full list of names, read the source.

The Special fxtrees Path

The fxtrees path is special. If you hg pull fxtrees, firefoxtree will pull from all Firefox repositories that
you have previously pulled from.

Typically, developers only care about a subset of all the Firefox repositories. hg pull fxtrees provides a conve-
nient mechanism to only pull the repositories you have previously expressed an interest in interacting with.

2.4. Mercurial for Mozillians 41

https://hg.mozilla.org/hgcustom/version-control-tools/file/default/pylib/mozautomation/mozautomation/repository.py

Mozilla Version Control Tools, Release 0

Other Special Paths

There are some special paths that expand to multiple repositories. If you run hg pull with one of these paths,
firefoxtree will iterate through each of these repositories and pull from all of them. These special paths include:

integration Pull from all integration/landing repositories (autoland)

releases Pull from all repositories that Firefox is released from (central, beta, release, esr, etc)

Safer Push Defaults

The default behavior of hg push is to want to transfer all non-remote changesets to the remote. In other words, if you
have pulled mozilla-central and mozilla-aurora into the same repository and you hg push ssh://hg.mozilla.
org/mozilla-central, Mercurial will want to transfer all of mozilla-aurora’s changesets to central!

The way you are supposed to do this is to always pass a --rev or -r argument to hg push to tell Mercurial exactly
what changesets to push. Commonly, you want to push the working copy’s commit, so the command to use would be
hg push -r . <remote>.

Since hg push -r . is almost always what is wanted when pushing to a Firefox repository, firefoxtree automati-
cally changes hg push to behave like hg push -r . when pushing to a Firefox repository.

Working with Unified Repositories and Repository Labels

Astute readers may have noticed that Mercurial is reporting the repository labels as tags. However, they don’t behave
like tags. The .hgtags file is not updated and hg push won’t transfer them. Under the hood, the extension is
using an extension-only feature of Mercurial to supplement the tags list. The labels are being reported as tags, but
have almost nothing to do with actual tags.

The repository labels can only be modified by firefoxtree. Furthermore, they are only modified when running hg
pull. Unlike bookmarks or branches, user actions such as committing will not advance the labels.

2.4.8 Working With a Unified Firefox Repository

Traditionally, the various Firefox repositories (mozilla-central, autoland,
mozilla-beta, etc) have been separate repositories. They all share the same root commit
(8ba995b74e18334ab3707f27e9eb8f4e37ba3d29), so it is possible to combine them locally. This
has several benefits:

• You can easily switch between heads using hg up

• You can easily compare changes across different heads using hg log, hg diff, and other tools.

• Landing a patch is as simple as hg rebase.

• You only have to fetch the data associated with each commit exactly once (with separate repositories, you
transfer down each commit N times).

Unified Repository on hg.mozilla.org

https://hg.mozilla.org/mozilla-unified is a read-only unified repository containing all of the com-
mits on the default branch of the various Firefox repositories (mozilla-central, autoland, aurora, beta, release, esr,
etc) in chronological order by push time.

42 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

Advantages of the Unified Repo

If you pull from multiple Firefox repositories or maintain multiple clones, pulling from the unified repository will be
faster and require less local storage than pulling from or cloning N repositories.

The unified repository does not include extra branches, notably the *_RELBRANCH branches. If you’ve ever pulled
the mozilla-beta or mozilla-release repositories, you know how annoying the presence of these branches can be.

The unified repository features bookmarks that track each canonical repository’s head. For example, the central
bookmark tracks the current head of mozilla-central. If you naively pulled all the Firefox repositories into a local
Mercurial repository, you would have multiple anonymous heads on the default branch and you wouldn’t know
which head belonged to which Firefox repository. The bookmarks solve this problem.

In a nutshell, the unified repository solves many of the problems with Firefox’s multi repository management model
in a way that doesn’t require client-side workarounds like the firefoxtree extension.

Working with the Unified Repo (Vanilla Mercurial)

Here is the basic workflow for interacting with the unified repo when using a vanilla Mercurial configuration (no
firefoxtree extension).

First, clone the repo:

$ hg clone --uncompressed https://hg.mozilla.org/mozilla-unified

Update to a bookmark you want to base work off of:

$ hg up central
42 files updated, 0 files merged, 0 files removed, 0 files unresolved
(activating bookmark central)

Then start a new bookmark to track your work:

$ hg bookmark myfeature

Then make changes and commit:

<edit some files>
$ hg commit

If you want to rebase:

$ hg pull
$ hg rebase -b myfeature -d central

Be sure you’ve activated your own bookmark or deactivated the Firefox bookmark before committing or you may
move the bookmark from the server. The easiest way to do this is:

$ hg up .
(leaving bookmark central)

Working with the Unified Repo (firefoxtree)

If you have the firefoxtree extension installed, the behavior of the unified repository changes slightly. Instead of
pulling bookmarks, the firefoxtree extension stores labels of the same name in a read-only namespace instead.

2.4. Mercurial for Mozillians 43

Mozilla Version Control Tools, Release 0

Not using bookmarks means you can’t accidentally update your local bookmarks corresponding to Firefox repo state
and drift out of sync with reality. It also means you don’t have to activate and deactivate bookmarks locally: enabling
you to engage in simpler workflows.

Here is how workflows typically look like with firefoxtree installed.

First, clone the repo:

$ hg clone --uncompressed https://hg.mozilla.org/mozilla-unified

Update to the repo/head you want to work on:

$ hg up central
42 files updated, 0 files merged, 0 files removed, 0 files unresolved
(activating bookmark central)

Optionally create a new bookmark to track your work:

$ hg bookmark myfeature

Then make changes and commit:

<edit some files>
$ hg commit

If you want to rebase:

$ hg pull
$ hg rebase -b myfeature -d central

The firefoxtree extension will also print the number of new commits to each repo since last pull.:

$ hg pull
pulling from https://hg.mozilla.org/mozilla-unified
searching for changes
adding changesets
adding manifests
adding file changes
added 39 changesets with 309 changes to 235 files
updated firefox tree tag beta (+2 commits)
updated firefox tree tag release (+1 commits)
(run 'hg update' to get a working copy)

generaldelta and the Unified Repo

The unified repository is encoded using Mercurial’s generaldelta storage mechanism. This results in smaller reposito-
ries and faster repository operations.

Important: Mercurial repositories created before Mercurial 3.7 did not use generaldelta by default. Pulling from the
repository to a non-generaldelta clone will result in slower operations.

It is highly recommended to create a new clone of the unified repository with Mercurial 3.7+ to ensure your client is
using generaldelta.

To check whether your existing Firefox clone is using generaldelta:

44 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

$ grep generaldelta .hg/requires

If there is no generaldelta entry in that file, you will need to create a new repo that has generaldelta enabled.
Adding ‘‘generaldelta‘‘ to the requires file does not enable generaldelta on an existing repo, so don’t do it. See
Upgrading Repository Storage for instructions on how to do this.

incompatible Mercurial client; bundle2 required

Does this happen to you?:

$ hg clone https://hg.mozilla.org/mozilla-unified firefox
requesting all changes
abort: remote error:
incompatible Mercurial client; bundle2 required
(see https://www.mercurial-scm.org/wiki/IncompatibleClient)

This message occurs when the Mercurial client is not speaking the modern bundle2 protocol with the server. For
performance reasons, we require bundle2 to clone or pull the unified repository. This decision is non-negotiable
because removing this restriction could result in excessive CPU usage on the server to serve data to legacy clients.

If you see this message, your Mercurial client is too old. You should upgrade.

Uplifting / Backporting Commits

Often times there are commits that you want to uplift to other projects branches. e.g. a commit from
mozilla-central should be uplifted to mozilla-aurora. This operation is typically referred to as a backport
or a cherry-pick.

The hg graft command should be used to perform these kinds of operations.

Say you wish to backport 77bbac61cd5e from central to aurora.:

Ensure your destination repository is up to date.
$ hg pull aurora
...

Update to the destination where commits should be applied.
$ hg up aurora

Perform the backport.
$ hg graft -r 77bbac61cd5e

When hg graft is executed, it will essentially rebase the specified commits onto the target commit. If there are no
merge conflicts or other issues, it will commit the new changes automatically, preserving the original commit message.

If you would like to edit the commit message on the new commit (e.g. you want to add a=), simply add --edit:

$ hg graft --edit -r 77bbac61cd5e

If Mercurial encounters merge conflicts during the operation, you’ll see something like the following:

$ hg graft -r 77bbac61cd5e
warning: conflicts during merge.
merging foo incomplete! (edit conflicts, then use 'hg resolve --mark')
abort: unresolved conflicts, can't continue
(use hg resolve and hg graft --continue)

2.4. Mercurial for Mozillians 45

Mozilla Version Control Tools, Release 0

Read Mercurial’s conflict docs for how to resolve conflicts. When you are done resolving conflicts, simply run hg
graft --continue to continue the graft where it left off.

If you wish to backport multiple commits, you can specify a range of commits to process them all at once:

$ hg graft -r 77bbac61cd5e::e8f80db57b48

Tip: hg graft is superior to other solutions like hg qimport because hg graft will perform a 3-way merge
and will use Mercurial’s configured merge tool to resolve conflicts. This should give you the best possible merge
conflict outcome.

Maintaining Multiple Checkouts With a Unified Repository

Developers often maintain multiple checkouts / working directories of Firefox. For example, you may do all your day-
to-day work on mozilla-central but also have a mozilla-beta checkout around for testing patches against
Firefox Beta.

A common reason why developers do this is because updating to different commits frequently requires a build system
clobber. This is almost always true when updating between different Gecko versions.

Some people may say I prefer maintaining separate clones because it means I don’t have to clobber as often. What
they are really saying is I want to maintain separate working directories that are independent.

The solution to use is to use hg share. hg share allows you to create a new working copy of a repository that
shares the backing repository store with another.

Add the following to your Mercurial configuration file:

[extensions]
share =

Then, create a shared store as follows:

$ hg share /path/to/existing/clone /path/to/new/checkout

Now, you can hg up inside both repositories independently! If you commit to one, that commit will be available in
the other checkouts using that shared store.

Tip: Mercurial 3.3 and newer support sharing bookmarks with repositories created with hg share. To activate
bookmark sharing, you’ll need to add -B to hg share. e.g. hg share -B existing new-checkout

Caution: Users of MQ should exercise extreme caution when using shared stores.

MQ operates at a low-level in Mercurial: every MQ operation is essentially creating or deleting commits from the
store. Deleting commits from large repositories like Firefox’s can be a very expensive operation. You not only pay
a penalty at operation time, but all the shared repositories may have expensive computations to perform the next
time the repository is accessed.

MQ users are advised to not use hg share.

MQ users are advised to switch to head/bookmark-based development to avoid these limitations.

46 Chapter 2. Table of Contents

https://www.mercurial-scm.org/wiki/TutorialConflict

Mozilla Version Control Tools, Release 0

2.4.9 Firefox Workflow

This article outlines the recommended workflow for interacting with the Firefox repository (mozilla-unified).

Optimally Configure Mercurial

When you run bootstrap.py or mach bootstrap (if you already have a clone), the bootstrapper will prompt
you to run a Mercurial configuration wizard. You should run this wizard and make sure it is happy about your Mercurial
state.

You should also run mach bootstrap periodically to ensure Mercurial support files are up-to-date.

Important: The instructions in this article assume the firefoxtree extension is installed. Please activate it when the
wizard prompts you to!

Cloning the Repository

Clone the Firefox repository by running:

$ hg clone https://hg.mozilla.org/mozilla-unified firefox
$ cd firefox

Feature Development

So you want to start work on a new Firefox feature? This section is for you.

Start by obtaining the latest code so you aren’t working on old and possibly stale code:

$ hg pull

Then update to the tip of mozilla-central:

$ hg up central

Now, change some stuff. We assume you know how to do this.

Commit your changes:

$ hg commit
<type commit message in editor>

Make more changes and keep committing:

$ hg commit
<another commit message>

Push your changes to Phabricator to initiate code review. See the the Phabricator documentation for more information.

OK. Progress on that feature is blocked waiting on review. It could take a while for that to happen. Let’s start working
on something else. We always start by pulling the latest code so our change isn’t out of date before we’ve event
started.:

2.4. Mercurial for Mozillians 47

https://hg.mozilla.org/mozilla-unified
https://moz-conduit.readthedocs.io/en/latest/phabricator-user.html

Mozilla Version Control Tools, Release 0

$ hg pull
$ hg up central
<change stuff>
$ hg commit
<change stuff>
$ hg commit

Changing Code After Reviews

A review comes back. Unfortunately review was not granted and you need to make changes. No worries.

We need to update the working directory to the changeset to be modified so we can edit them. How you do this
depends on how you are tracking commits. For most workflows, we recommend hg wip (see Workflows for more on
this command) to find them. e.g.:

$ hg wip
o 6139:5060abe260e9 gps vcsreplicator: explicitly record obsolescence markers in
→˓pushkey messages
: o 5940:e16f6960cdeb gps hgmo: update automationrelevance for Mercurial 3.8; r?
→˓smacleod
: o 5939:e62f4eb60ef3 gps mozhg: fix test output for Mercurial 3.8; r?glob
: o 5938:f71be022e59c gps global: upgrade Mercurial to 3.8.3 (bug 1277714)
:/
o 5937:5a8623230b7a gps pushlog: convert user and nodes to bytes (bug 1295724);
→˓r=smacleod
: o 5717:9c2ca05479e9 gps hgmo: handle obsolete changesets (bug 1286426); r?
→˓glandium

If you want to edit e16f6960cdeb, you would hg up e16f6960cdeb.

Or if you are using bookmarks, you can update directly to the bookmark:

$ hg up my-bookmark
4 files updated, 0 files merged, 0 files removed, 0 files unresolved
(activating bookmark my-bookmark)

Now that your working directory is updated, you can start making changes.

You have several options available to you. If you know the changes are small and won’t conflict if reordered, go ahead
and make them now and commit:

<make changes>
$ hg commit
<make more changes>
$ hg commit

Then squash the changesets together:

$ hg histedit

Note: For hg histedit to work without arguments, you’ll need Mercurial 3.7 or newer.

You’ll then need to:

1. Reorder your fixup changesets to occur immediately after (below) the changesets they will be modifying.

48 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

2. Set the action on these fixup changesets to roll so they are fully absorbed into the changeset that came before.

Alternatively, you can edit changes directly. Again, use hg histedit. But this time, change the action of the
changesets you want to modify to edit. Mercurial will print some things and will leave you with a shell. The
working directory will have been updated to the state of the commit you are editing. If you run hg status or hg
diff you will see that this changesets’s changes are applied to files already. Make your changes to the files then run
hg histedit --continue to continue with the history editing.

Note: Advanced users can use the evolve extension <https://bitbucket.org/marmoute/mutable-history> to edit change-
sets in place.

Once all the changes are made, you’ll want to submit to Phabricator for review once more. Then we’re back to waiting.

Landing Code

You finally get review and can land your changes!

The easiest way to do this is through the use of Lando. You can access Lando through View stack in Lando
on the right of your Phabricator review. Clicking this button takes the user to a menu which displays the stack of
changesets to land, the history of previous landing attempts and a big green “Preview Landing” button. Clicking this
button will allow you to check that the state of the changesets is appropriate for landing, and that there are no landing
warnings. If there are landing warnings but you feel the stack can still land despite them, simply check the radio box
to acknowledge the risks and proceed as usual.

Lando will attempt to rebase you commits on the head of the autoland repo for you automatically. If it can’t do
this (say there was a file merge conflict during the base), an error will (eventually) be displayed in the Lando landing
attempt history and you will have to rebase yourself and push the result back to Lando and try the request again.

Note: Only landing to the autoland repo is supported. This is because we will be removing integration repos in
the future so the history of mozilla-central isn’t linear and free of merge commits.

If Lando succeeds, Pulsebot will comment in your bug that your changes have landed. Unfortunately, there is not
currently any notification that Lando has failed outside of Lando itself, so if the trees are open and your changes have
not landed within a few minutes, please check back in MozReview to see if any errors have occurred.

For more detailed information, please reference the Lando user guide.

Manual Reviewer Attribution and Landing

Unable to use Autoland? Follow these instructions.

Update to the tip-most changeset that will land (often a head) after finding the changesets using the technique in the
previous section:

$ hg up <SHA-1 or label>

Before landing, we need to rebase our unlanded changesets on top of the latest changeset from an integration branch:

$ hg pull
$ hg rebase -d autoland

If you need to add r= reviewer attribution to the commit message, do that now:

2.4. Mercurial for Mozillians 49

https://moz-conduit.readthedocs.io/en/latest/lando-user.html

Mozilla Version Control Tools, Release 0

$ hg histedit

Change the action to m for all the changesets and proceed to update commit messages accordingly.

And finally we land:

$ hg push -r . autoland

2.4.10 Configuring Authentication

Caution: This section is only for people who already have push access to Mozilla’s Mercurial repository.

If you don’t have push access, or if you aren’t sure what that is, you can skip this section.

SSH Configuration

Pushing to Mercurial is performed via SSH. You will need to configure your SSH client to talk appropriate settings to
Mozilla’s Mercurial servers.

Typically, the only setting that needs configured is your username. In your SSH config (likely ~/.ssh/config),
add the following:

Host hg.mozilla.org
User me@mozilla.com

Tip: Be sure to replace me@mozilla.comwith your lowercase Mozilla-registered LDAP account that is configured
for SSH access to Mercurial. The default ssh key is id_rsa.

You can specify an alternate key path in the configuration file, as shown in the folowing example:

Host hg.mozilla.org
User me@mozilla.com
IdentityFile /path/to/my/key

You can generate a key using ssh-keygen. It will print a message with the location of the generated key. You can
then go to login.mozilla.com, authenticate and navigate to the “SSH Keys” section. You might need to authenticate a
second time, and when that’s done you should see in the page an “Upload SSH Public Key” button. Clicking on it will
show a text area in which you need to copy the whole content of the file ssh-keygen generated.

You can then run ssh -vvv hg.mozilla.org to troubleshoot any key or connection related issues.

The first time you connect, you will be asked to verify the host SSH key.

The fingerprints of the host keys for hg.mozilla.org are as follows:

ED25519 (server preferred key)
256 SHA256:7MBAdqLe8+aSYkv+5/2LUUxd+WdgYcVSV+ZQVEKA7jA hg.mozilla.org
256 SHA1:Ft++OU96cvaREKNFCJ6AiuCpGac hg.mozilla.org
256 MD5:96:eb:3b:78:f5:ca:19:e2:0c:a0:95:ea:04:28:7d:26 hg.mozilla.org

RSA
4096 SHA256:RX2OK8A1KNWdxyu6ibIPeEGLBzc5vyQW/wd7RKjBehc hg.mozilla.org

(continues on next page)

50 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

(continued from previous page)

4096 SHA1:p2MGe4wSw8ZnQ5J9ShBk/6VA+Co hg.mozilla.org
4096 MD5:1c:f9:cf:76:de:b8:46:d6:5a:a3:00:8d:3b:0c:53:77 hg.mozilla.org

Verify your SSH settings are working by attempting to SSH into a server. Your terminal output should resemble the
following:

$ ssh hg.mozilla.org
A SSH connection has been successfully established.

Your account (me@example.com) has privileges to access Mercurial over
SSH.

You are a member of the following LDAP groups that govern source control
access:

scm_level_1

This will give you write access to the following repos:

Try

You will NOT have write access to the following repos:

Autoland (integration/autoland), Firefox Repos (mozilla-central, releases/*), ...

You did not specify a command to run on the server. This server only
supports running specific commands. Since there is nothing to do, you
are being disconnected.
Connection to hg.mozilla.org closed.

Authenticating with Services

Various Mercurial extensions interface with services such as Bugzilla. In order to do so, they often need to send
authentication credentials as part of API requests. This document explains how this is done.

mozhg.auth contains a unified API for any Mercurial extension or hook wishing to obtain authentication credentials.
New extensions are encouraged to use or add to this module instead of rolling their own code.

Finding Bugzilla Credentials

mozhg.auth.getbugzillaauth() is the API used to request credentials for bugzilla.mozilla.org. It
will attempt to find credentials in the following locations:

1. The bugzilla.userid and bugzilla.cookie values from the active Mercurial config.

2. The bugzilla.username and bugzilla.password values from the active Mercurial config.

3. Login cookies from a Firefox profile.

4. Interactive prompting of username and password credentials.

Credential Extraction from Firefox Profiles

As mentioned above, authentication credentials are searched for in Firefox profiles. For example, Bugzilla login
cookies are looked for in Firefox’s cookie database.

2.4. Mercurial for Mozillians 51

Mozilla Version Control Tools, Release 0

The first step of this is finding available Firefox profiles via the current user’s profiles.ini file.

By default, the available profiles are sorted. The default profile is searched first. Remaining profiles are searched
according to the modification time of files in the profile - the more recent the profile was used, the earlier it is searched.

If the bugzilla.firefoxprofile config option is present, it will explicitly control the Firefox profile search
order. If the value is a string such as default, only that profile will be considered. If the value is a comma-delimited
list, only the profiles listed will be considered and profiles will be considered in the order listed.

2.4.11 Using Mercurial in Automation

Are you looking to consume Mercurial as part of an automated system? This article attempts to answer common
questions and to suggest best practices.

Best Practices

Read the Scripting Help Topic

hg help scripting (introduced in Mercurial 3.5) gives a Mercurial generic overview of how machines should
consume Mercurial.

Get Design and Code Review from Someone Who Knows Mercurial

Before you write any code or deploy anything, it might be a good idea to get design review or code review from
someone who knows Mercurial.

Pop in #vcs on irc.mozilla.org or send an email to dev-version-control@lists.mozilla.org.

Consider Using the Command Server

Mercurial has a command server mode where a persistent hg process is created and individual commands are dis-
patched to the server one at a time.

There exists client libraries for communicating with this command server python-hglib is the Python client and it can
be installed via pip install python-hglib.

Use of the command server is preferred over direct hg process invocation because:

1. It is faster.

2. A written client API will handle dispatching and parsing responses automatically, freeing you up to write mean-
ingful code.

Python + hg process startup overhead is non-trivial (~50 ms). If you are performing many Mercurial commands, use
of the command server could have a profound impact on performance.

Use Templates

Most Mercurial commands accept a --template/-T argument to control how output is formatted. You should use
this capability when calling commands to ensure output is exactly how you intend. This can often result in making the
output easier for machines to parse.

52 Chapter 2. Table of Contents

mailto:dev-version-control@lists.mozilla.org
https://pypi.python.org/pypi/python-hglib

Mozilla Version Control Tools, Release 0

Tip: Use -T json to produce JSON output from commands.

Add –traceback to All Commands

In the rare case Mercurial crashes, it is valuable to have crash information to help with debugging. Adding
--traceback to all commands will have Mercurial print a stack trace when it crashes.

As an alternative to adding --traceback to every command, add the following to your hgrc:

[ui]
traceback = on

Always Check Exit Codes

Always check that the exit code from hg commands is what is expected (probably 0).

Specify an Explicit hgrc

Mercurial will automatically inherit the system-wide and per-user hgrc files. This can have unintended consequences,
such as the enabling of an extension or defining of specific user credentials.

When invoking the hg command, set the HGRCPATH environment variable to that of a known good config file.

Tip: To disallow loading of an external hgrc file, set HGRCPATH to the value /dev/null.

Note: If executing from within a Mercurial repository, the hg process will automatically load the .hg/hgrc file.
This is not always intended, especially if you are running commands that don’t interact with a specific repository.

To prevent this, execute your hg process from outside any Mercurial repository. e.g. /.

You can always pass -R /path/to/repo to have Mercurial operate on a specific repository - you don’t need to
have cwd be from within the repository.

Other Tips

Debugging

When debugging Mercurial commands, consider adding --verbose or --debug to the command invocation to get
Mercurial to print more information about what it is doing. This output can be especially when reporting bugs.

Like --traceback, these options can be enabled via hgrc files:

[ui]
debug = True
verbose = True

2.4. Mercurial for Mozillians 53

Mozilla Version Control Tools, Release 0

2.4.12 Reporting Issues with Mercurial

Are you having a bad experience with Mercurial or with hg.mozilla.org? Read on to learn how to report it and
(hopefully) get it resolved.

Mercurial and Mozilla

The Mercurial project cares about Mozilla because the Firefox repository is one of the largest open source Mercurial
repositories both in terms of repository size and number of users. Because of that scale, Mozillians tend to notice
issues with Mercurial before others. As such, the Mercurial project is very keen to learn about and address the
problems Mozillians may have.

How to Report Issues

With hg.mozilla.org

Notice something weird on hg.mozilla.org (including performance problems)? Please file a bug against Developer
Services :: hg.mozilla.org.

If you want to talk with someone before filing a bug, hop in to #vcs on irc.mozilla.org. That is a low traffic channel
and your question should be answered eventually.

With Core Mercurial

Found a bug in Mercurial? Have a performance concern? File a bug in Mercurial’s Bugzilla. Choose the Mercurial
component if you are unsure what component to use.

Before filing bugs, ensure you are using the latest Mercurial release. If not, the first thing people will ask you is to try
to reproduce with the latest release.

When filing bugs, practice good bug filing etiquite and try to include steps to reproduce.

Tip: Many Mercurial developers have a copy of mozilla-central for performance testing. Bug reports that reference
mozilla-central (or any public repository for that matter) are acceptable.

If you are unsure whether something is a bug, hop in to #mercurial on the Freenode IRC network and ask around. Or,
post to one of the Mercurial mailing lists.

With a Mozilla Extensions

Mozillians have authored a handful of Mercurial extensions. If you find a bug in one, file a bug against that extension’s
Bugzilla component. These components all exist in the Developer Services product on bugzilla.mozilla.org.

Before filing bugs, ensure you are using the latest Mercurial release and that your version-control-tools repo (the repo
containing most of the extensions) is fully up to date. Otherwise, you may be reporting a bug that’s been fixed already.

For the Impatient

In a hurry and don’t want to spend the time to report a proper bug? Ping sheehan on irc.mozilla.org and he’ll do the
right thing if he can.

54 Chapter 2. Table of Contents

https://bugzilla.mozilla.org/enter_bug.cgi?product=Developer%20Services&component=Mercurial%3A%20hg.mozilla.org
https://bugzilla.mozilla.org/enter_bug.cgi?product=Developer%20Services&component=Mercurial%3A%20hg.mozilla.org
https://bz.mercurial-scm.org/
https://www.mercurial-scm.org/wiki/MailingLists

Mozilla Version Control Tools, Release 0

Ways to Make Bug Reports More Useful

All Mercurial commands accept the following options, which may prove useful when reporting bugs:

--debug When this option is present, Mercurial will print debug info to output. This may aid debugging hangs and
other issues.

--traceback When this option is present, Mercurial will dump its execution stack when aborted. Using –traceback
plus ctrl+c is a good way to see which method is spinning the CPU.

--profile Profile Mercurial execution and print a summary after execution. This is useful for debugging perfor-
mance issues to see where Mercurial is spending most of its time.

Including the output with one or more of these options can make bugs reports (especially performance issues) much
more meaningful.

Another tool to aid debugging is the blackbox extension. Simply add the following to your hgrc:

[extensions]
blackbox =

[blackbox]
track = *
maxsize = 10 MB
maxfiles = 2

A .hg/blackbox.log file will now exist in each repository. This log will capture forensic details that may aid
debugging and performance analysis.

How Not to Report Issues

Please do not complain about issues (e.g. on #developers) without telling someone who can do something about it.
Otherwise, you have effectively complained to a black hole and your problems will likely persist because someone
empowered to do something about them doesn’t know of them.

If you see something, file something! Don’t be just a complainer: be an enabler.

2.5 hg.mozilla.org

2.5.1 Architecture

hg.mozilla.org is an Internet connected service.

hg.mozilla.org exposes HTTP and SSH service endpoints all running on standard ports. Connections to these services
connect to a load balancer.

2.5. hg.mozilla.org 55

Mozilla Version Control Tools, Release 0

HTTP requests to port 80 are always HTTP 301 redirected to https://hg.mozilla.org/ and come back in via port 443.

HTTPS connections to port 443 are routed to a pool of read-only mirrors. We call these the hgweb servers.

(Server names are representative.)

Each server is identically configured and behaves like the others. HTTP connections/requests are routed to any avail-
able hgweb server.

SSH connections to port 22 are routed to a single primary server. There is a warm standby for the primary server that
is made active should the primary server fail. We collectively refer to these as the hgssh servers.

56 Chapter 2. Table of Contents

https://hg.mozilla.org/

Mozilla Version Control Tools, Release 0

SSH connections use public key authentication. User access control and storage of SSH public keys is stored in an
LDAP server.

An authenticated SSH connection spawns the pash.py script from the version-control-tools repository. This script
performs additional checking of the incoming request before eventually spawning an hg serve process, which
allows the Mercurial client to communicate with a repository on the server.

The hgssh servers hold the canonical repository data on a network appliance exporting a mountable read-write filesys-
tem.

2.5. hg.mozilla.org 57

Mozilla Version Control Tools, Release 0

All repository write operations are performed via SSH and are handled by the primary hgssh server.

Various Mercurial hooks and extensions run on the hgssh server when repository events occur. Some of these verify
incoming changes are acceptable and reject them if not. Others perform actions in reaction to the incoming change.

In terms of service architecture, the most important action taken in reaction to pushes is writing events into the repli-
cation system.

Repository Replication Mechanism

See Replication for the architecture of the replication system.

Notifications

As described in the replication documentation, there exists a pushdataaggregatorKafka topic exposing a stream
of fully-replicated repository change messages.

Various services on the active primary hgssh server consume this topic and do things with the messages. One consumer
notifies Pulse of repository changes. Another sends messages to AWS SNS.

See Change Notifications for more.

From there, various other services not part of the hg.mozilla.org infrastructure react to events. For example, pulsebot
creates IRC notifications, Taskcluster schedules Firefox CI, and Treeherder records the push.

58 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

HTTP Repository Serving

Nearly every consumer of hg.mozilla.org consumes the service via HTTP: only pushes should be using SSH.

The HTTP service is pretty standard for a Python-based service: there’s an HTTP server running on each hgweb
server that converts the requests to WSGI and sends them to a Python process running Mercurial’s built-in hgweb
server. hgweb handles processing the request and generating a response.

hgweb serves mixed content types (HTML, JSON, etc) for web browsers and other agents. In addition, hgweb also
services Mercurial’s custom wire protocol for communicating with Mercurial clients.

When a client executes an hg command that needs to talk to hg.mozilla.org, the client process establishes an HTTP
connection with hg.mozilla.org and issues commands to a repository there via HTTP. Run hg help internals.
wireproto for details of how this works.

Clone Offload

In order to alleviate server-side CPU and network load, frequently accessed repositories on hg.mozilla.org use Mer-
curial’s clone bundles feature so hg clone operations download most repository data from a pre-generated static
bundle file hosted on a scalable HTTP server.

Most Mercurial clients will fetch a bundle from the CloudFront CDN.

2.5. hg.mozilla.org 59

Mozilla Version Control Tools, Release 0

If the client can’t connect to CloudFront (requires SNI) or if the client is connecting from an AWS IP belonging to an
AWS region where we have an S3 bucket containing repository data, the client will connect to S3 instead.

60 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

Offloading the bulk of expensive hg clone operations to pre-generated files hosted on highly scalable services
results in faster clones for clients and drastically reduces the server requirements for the hg.mozilla.org service.

See Cloning from Pre-Generated Bundles and the Cloning from S3 blog post for more on clone bundles.

2.5.2 Custom APIs

In addition to the APIs and services that Mercurial provides out-of-the-box, hg.mozilla.org offers a handful of custom
APIs for services to consume.

Pushlog

The Pushlog records when pushes are made to a repository and who made them. See Pushlog for more.

2.5. hg.mozilla.org 61

http://gregoryszorc.com/blog/2015/07/08/cloning-from-s3/

Mozilla Version Control Tools, Release 0

Firefox Releases

Firefox repositories are able to expose information about the set of Firefox releases tied to Mercurial changesets in
that repository. See Firefox Release Data for more.

Repository Metadata

The repoinfo web command provides additional information about a repository, such as the group membership
required to push to that repository.

See e.g. https://hg.mozilla.org/mozilla-central/repoinfo and https://hg.mozilla.org/mozilla-central/json-repoinfo.

Automation Relevance

The automationrelevance web command provides information on what changesets are relevant to automated
consumers given a source changeset.

URLs have the form <repo>/json-automationrelevance/<changeset>. e.g. https://hg.mozilla.org/
integration/autoland/json-automationrelevance/67342f5762dd6e7ea3a783876cd9d35517ff3386.

The data contains a set of changesets and corresponding metadata (such as pushlog info and the set of files changed).
The relevant changesets are the changesets that should be used to influence scheduling of tasks that examine the
correctness of those changesets.

For most repositories, the relevant set consists of changesets in the same push as the queried changeset.

For special repositories (notably the try repositories), the relevant set is supplemented by non-public ancestors of the
queried changeset. e.g. if you push a series of changesets to Try and then iterate on just the last changeset, the relevant
set on subsequent pushes will include the base changesets from previous push(es).

2.5.3 Pushlog

Mozilla has taught Mercurial how to record who pushes what where and when. This is called the pushlog. It is
essentially a log of pushes to repositories.

Technical Details

All pushes to hg.mozilla.org occur via SSH. When clients talk to the server, the authenticated username from
SSH is stored in the USER environment variable. When a push occurs, our custom pushlog Mercurial extension
will record the username, the current time, and the list of changesets that were pushed in a SQLite database in the
repository.

Installing

The pushlog extension (source in hgext/pushlog) contains the core data recording and data replication code.
When installed, a pretxnchangegroup hook inserts pushlog entries when changesets are introduced. To install
this extension, add the following line to your hgrc:

[extensions]
pushlog = /path/to/version-control-tools/hgext/pushlog

62 Chapter 2. Table of Contents

https://hg.mozilla.org/mozilla-central/repoinfo
https://hg.mozilla.org/mozilla-central/json-repoinfo
https://hg.mozilla.org/integration/autoland/json-automationrelevance/67342f5762dd6e7ea3a783876cd9d35517ff3386
https://hg.mozilla.org/integration/autoland/json-automationrelevance/67342f5762dd6e7ea3a783876cd9d35517ff3386

Mozilla Version Control Tools, Release 0

No additional configuration is necessary.

The web components for pushlog are separate from the core extension and require a bit more effort to configure. This
code lives in hgext/pushlog/feed.py. It is our intention to eventually aggregate this code into a single pushlog
extension so there is a unified pushlog experience.

The web component will require the following extension:

[extensions]
pushlog-feed = /path/to/version-control-tools/hgext/pushlog/feed.py

pushlog/feed.py exposes some hgweb endpoints that expose pushlog data.

Templates

It isn’t enough to activate the pushlog/feed.py extension: you’ll also need to configure some Mercurial theming
to render pushlog data.

The Atom output will require the existence of an atom style. You are encouraged to copy the files in hgtemplates/
atom to your Mercurial styles directory.

The pushloghtml page will render the pushlog template. This is something you’ll need to define. Look for
pushlog.tmpl files in hgtemplates/ in this repository for examples.

Pushlog templates typically make use of a named pushlogentry entity. You may also need to define this. Searching
for pushlog in hgtemplates to find all references is probably a good idea.

Pushlog Wire Protocol Command

The pushlog extension exposes a pushlog command and capability to the Mercurial wire protocol. This enables
Mercurial clients to retrieve pushlog data directly from the wire protocol.

For more details, read the source in hgext/pushlog/__init__.py.

The Push ID

Entries in the pushlog have an incrementing integer key that uniquely identifies them. It is guaranteed that push ID N
+ 1 occurs after N.

hgweb Commands

There are a couple custom hgweb commands that expose pushlog information.

For reference, an hgweb command is essentially a per-repository handler in hgweb (Mercurial’s HTTP interface).
URLs have the form https://hg.mozilla.org/<repository>/<command>/<args>.

json-pushes Command

The json-pushes command exposes JSON representation of pushlog data.

2.5. hg.mozilla.org 63

https://www.mercurial-scm.org/wiki/Theming

Mozilla Version Control Tools, Release 0

pushlog Command

The pushlog command exposes an ATOM feed of pushes to the repository.

It behaves similarly to json-pushes in terms of what parameters it can accept.

pushloghtml Command

The pushloghtml command exposes HTML show pushlog data.

Query Parameters

Various hgweb pushlog commands accept query string parameters to control what data is returned.

The following parameters control selection of the lower bound of pushes. Only 1 takes effect at a time. The behavior
of specifying multiple parameters is undefined.

startdate A string defining the start date to query pushes from. Only pushes after this date (non-inclusive) will be
returned.

fromchange Only return pushes that occurred after the push that introduced this changeset. The value can be any
changeset identifier that Mercurial can resolve. This is typically a 40 byte changeset SHA-1.

startID Only return pushes whose ID is greater than the integer specified.

The following parameters control selection of the upper bound of pushes. Behavior is similar to the parameters that
control the lower bound.

enddate A string defining the end date for pushes. Only pushes before this date (non-inclusive) will be returned.

tochange Only return pushes up to and including the push that introduced the specified changeset.

endID Only return pushes up to and including the push with the specified push ID.

Only parameters that control behavior include:

user Only show pushes performed by the specified user.

changeset Only show pushes that introduced the specified changeset.

tipsonly If the value is 1, only return info from the tip-most changeset in the push. The default is to return info for all
changesets in a push.

full If this parameter is present (the value is ignored), responses will contain more verbose info for each changeset.

version Format of the response. 1 and 2 are accepted. 1 is the default (for backwards compatibility).

This is only used by json-pushes.

Dates can be specified a number of ways. However, using seconds since UNIX epoch is highly preferred.

JSON Payload Formats

Version 1

Version 1 (the default) consists of a JSON object with keys corresponding to push IDs and values containing metadata
about just the push. e.g.:

64 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

{
"16": {
"changesets": [
"91826025c77c6a8e5711735adaa9766dd4eac7fc",
"25f2a69ac7ac2919ef35c0b937b862fbb9e7e1f7"

],
"date": 1227196396,
"user": "gszorc@mozilla.com"
}

}

An optional obsoletechangesets key may also be present in each push. Read below for more.

Version 2

Version 2 introduces a container for pushes so that additional metadata can be communicated in the main object in the
payload. Here is an example payload:

{
"lastpushid": 21,
"pushes": {
"16": {

"changesets": [
"91826025c77c6a8e5711735adaa9766dd4eac7fc",
"25f2a69ac7ac2919ef35c0b937b862fbb9e7e1f7"

],
"date": 1227196396,
"user": "gszorc@mozilla.com"

}
}

}

The top-level objects contains the following properties:

pushes An object containing push information.

This is the same object that constitutes version 1’s response.

lastpushid The push ID of the most recent push known to the database.

This value can be used by clients to determine if more pushes are available. For example, clients may query for
N changesets at a time by specifying endID. The value in this property can tell these clients when they have
exhausted all known pushes.

Push Objects

The value of each entry in the pushes object is an object describing the push and the changesets therein.

The following properties are always present:

changesets An array of changeset entries.

By default, entries are 40 character changeset SHA-1s included in the push. If full is specified, entries are
objects containing changeset metadata (see below).

Changesets are in DAG/revlog order with the tip-most changeset last.

The array may be empty. This can occur if changesets from this push are now hidden/obsolete.

2.5. hg.mozilla.org 65

Mozilla Version Control Tools, Release 0

obsoletechangesets (optional) An array of 40 character changeset SHA-1s of now obsolete changesets included in
the push.

The DAG order relationship between changesets and obsoletechangesets is strictly speaking unde-
fined.

This key is only present if the repository has obsolescence data and the push has changesets that are now
obsolete.

date Integer seconds since UNIX epoch that the push occurred.

For pushes that take a very long time (more than a single second), the data will be recorded towards the end of
the push, just before the transaction is committed to Mercurial. Although, this is an implementation details.

There is no guarantee of strict ordering between dates. i.e. the date of push ID N + 1 could be less than the
date of push ID N. Such is how clocks work.

user The string username that performed the push.

If full is specified, each entry in the changesets and obsoletechangesets array will be an object instead
of a string. Each object will have the following properties:

node The 40 byte hex SHA-1 of the changeset.

parents An array of 1 or 2 elements containing the 40 byte hex SHA-1 of the parent changesets. Merges have 2
entries. Root changesets have the value 00.

author The author string from the changeset.

desc The changeset’s commit message.

branch The branch the changeset belongs to.

default is the default branch in Mercurial.

tags An array of string tags belonging to this changeset.

files An array of filenames that were changed by this changeset.

precursors (optional) An array of 40 character hex SHA-1 nodes identifying precursor nodes.

Precursor nodes are essentially previously versions of this changeset.

Precursor nodes come from obsolescence data. This key won’t exist if there are no precursor nodes for this
changeset.

The precursor changesets are hidden and not available to normal Mercurial operations. However, querying the
pushlog for their info may return results.

Here’s an example:

{
"author": "Eugen Sawin <esawin@mozilla.com>",
"branch": "default",
"desc": "Bug 1110212 - Strong randomness for Android DNS resolver. r=sworkman",
"files": [
"other-licenses/android/res_init.c"

],
"node": "ee4fe2ec168e719e822dabcdd797c0cff9ce2407",
"parents": [
"803bc910c45a875d9d76dc689c45dd91a1e02e23"

],
"precursors": [
"d313a202a85e114000f669c2fcb49ad42376ac04"

(continues on next page)

66 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

(continued from previous page)

],
"tags": []

}

Writing Agents that Consume Pushlog Data

It is common to want to write tools or services that consume pushlog data. For example, you may wish to perform
processing of new commits as they arrive.

Before you consider using the pushlog for this, you should consider the change notification services on hg.mozilla.org
instead. If those aren’t sufficient, you should request one that is.

If you must consume the pushlog for monitoring for new pushes, you will need to periodically poll each repository
separately. The following best practices should be used:

1. Query by push ID, not by changeset or date.

2. Always specify a startID and endID.

3. Try to avoid full if possible.

4. Always use the latest format version.

5. Don’t be afraid to ask for a new pushlog feature to make your life easier.

Querying by push ID is preferred because date ordering is not guaranteed (due to system clock skew) and because
changesets can occur in multiple pushes in Headless Repositories. If a changeset occurs in multiple pushes, using the
changeset as an identifier is ambiguous! Push IDs are the only guaranteed stable method for selecting pushes.

We recommend that startID and endID always be specified so response sizes are bound. If they are omitted, the
server may generate a very large payload. We’ve seen clients request all push data from the server and the response
JSON is over 100 MB!

Specifying full will incur an additional lookup on the server. Without full, the response JSON is generated purely
from the SQLite database. With full, data needs to be read from Mercurial. This adds overhead to the lookup and to
the transfer. If you don’t need the extra data, please don’t request it.

2.5.4 Managing Repositories

hg.mozilla.org has a self-service mechanism for managing some repositories on the server.

Overview

You can SSH into hg.mozilla.org and execute specific commands to perform repository management. You don’t
get a full shell. Instead, you will be interfacing with an interactive wizard that will guide you through available options.

What Repositories Can Be Managed

Currently, the self-service interface only allows management of user repositories. These are repositories under https:
//hg.mozilla.org/users/.

For management of non-user repositories, please file a Developer Services :: hg.mozilla.org bug.

2.5. hg.mozilla.org 67

https://hg.mozilla.org/users/
https://hg.mozilla.org/users/
https://bugzilla.mozilla.org/enter_bug.cgi?product=Developer%20Services&component=Mercurial%3A%20hg.mozilla.org

Mozilla Version Control Tools, Release 0

Who Has Access

Any account with level 1 commit access can push to user repositories and can manage their own user repositories.

When to Use a User Repository

hg.mozilla.org server operators have a reluctant tolerance towards the existence of user repositories on
hg.mozilla.org.

In the ideal world, Mozilla is not a generic repository hosting service and hosting of non-critical repositories would
be pushed off to free service hosting providers, such as Bitbucket. One reason is performance: user repositories take
resources that could otherwise be put towards making other services and repositories faster.

However, there are some scenarios where third party hosting providers won’t fulfill developer needs.

Important: Unless you have a specific need that requires hosting on hg.mozilla.org, you should consider hosting
your repository on another service instead of hg.mozilla.org.

Configuring

You will need to configure your SSH client to talk to hg.mozilla.org. See SSH Configuration for instructions.

Creating a User Repository

A new repository can be created by running the clone <repo> command. e.g.:

$ ssh hg.mozilla.org clone my-new-repo

An interactive wizard will guide you through the process that should be self-expanatory. You’ll have the option of
creating an empty repository or cloning (forking) from an existing repository.

Important: Creating repositories can sometimes take many minutes. Do not ctrl+c the operation or the servers may
be left in an inconsistent state.

If you encounter a problem, file a bug or say something in #vcs on Matrix.

Editing a User Repository

It is possible to configure a number of options on repositories. The common interface for all actions is to run edit
<repo>. e.g.:

$ ssh hg.mozilla.org edit my-repo

An interactive wizard will guide you through available options. Some of those options are described below.

68 Chapter 2. Table of Contents

https://www.mozilla.org/hacking/commit-access-policy/#Summary

Mozilla Version Control Tools, Release 0

Repository Description

It is possible to edit the repository’s description. This is text that appears in the repository listing at https://hg.mozilla.
org/.

Tip: We recommend always defining a description so people know what your repository is used for.

Publishing and Non-Publishing Repositories

Mercurial has a feature called phases that prevents changesets that have been published from being mutated (deleted,
rewritten, etc). It prevents a foot gun where you could accidentally rewrite history that has been shared with others,
which would result in divergent branches and confusion.

By default, Mercurial repositories are publishing, which means that anything pushed gets published (bumped to the
public phase in technical terms) and Mercurial clients won’t let you change those commits.

Important: User repositories on hg.mozilla.org are non-publishing by default.

If you would like to change whether your repository is publishing or non-publishing, use the edit <repo> com-
mand and select the appropriate option.

Obsolescence

It is possible to toggle the obsolescence feature on individual user repositories.

Obsolescence is an experimental feature of Mercurial that records how changesets evolve over time and allows old,
obsoleted commits to disappear from the repository.

Obsolescence is an aspect of changeset evolution.

There are downsides to enabling obsolescence:

• The transfer of obsolescence markers during push isn’t optimal and may significantly increase push times.

• Obsolescence doesn’t yet integrate very well with hgweb (the HTTP/HTML repository viewer).

• We may have to disable this feature or incur data loss due to its experimental nature.

Important: Due to the experimental state of the obsolescence feature, we may have to disable this feature or incur
data loss at any time.

Warning: Enable obsolescence at your own risk.

Tip: You do not need to enable obsolescence unless a user of your repository is using the evolve extension.

2.5. hg.mozilla.org 69

https://hg.mozilla.org/
https://hg.mozilla.org/
http://evolution.experimentalworks.net/doc/

Mozilla Version Control Tools, Release 0

Deleting a User Repository

To delete a user repository, run edit <repo> and select the delete option.

User Repository URLs

Your own user repositories are accessible under the following URLs:

ssh://hg.mozilla.org/users/<username>/<repo> (read/write) https://hg.mozilla.org/
users/<username>/<repo> (read only)

Your SSH/LDAP username is normalized. Specifically, the @ in your email address is normalized to _. e.g.
mary@example.com becomes mary_example.com.

When you create a user repository, you probably want to set up some paths in your hgrc. Here is an example .hg/
hgrc:

[paths]
default = https://hg.mozilla.org/users/me_example.com/my-repo
default-push = ssh://hg.mozilla.org/users/me_example.com/my-repo

2.5.5 Change Notifications

hg.mozilla.org publishes notifications when various events occur, such as a push to a repository.

Common Properties of Notifications

Notifications are sent after an event has been completely replicated to all active HTTPS replication mirrors.

Note: Unlike polling the pushlog, reacting to data advertised by these notifications is not susceptible to race conditions
when one mirror may have replicated data before another.

hg.mozilla.org guarantees chronological writing of notifications within individual repositories only. Assume we have
2 repositories, X and Y with pushes occurring in the order of X1, Y1, X2, Y2. We only guarantee that X1 is delivered
before X2 and Y1 is delivered before Y2. In other words, it is possible for Y1 (or even Y2) to be delivered before X1
(or X2).

Delivered messages have a type. The sections that follow describe the format/schema of each message type.

changegroup.1

This message type describes a push that introduced changesets (commits) on a repository.

The fields of this message type constitute the root fields of messages publishes to the exchange/hgpushes/v1
exchange.

repo_url The URL of the repository that was pushed to.

heads A list of 40 character SHA-1 changesets that are DAG heads resulting from this push. Typically, there is only
1 entry (because most pushes only push 1 head).

70 Chapter 2. Table of Contents

ssh://hg.mozilla.org/users
https://hg.mozilla.org/users
https://hg.mozilla.org/users

Mozilla Version Control Tools, Release 0

pushlog_pushes A list of dicts describing each Pushlog entry related to changesets in this push. This list should
be a single item. But it can be empty. If you see multiple entries, please say something in #vcs.

The list should only be empty for special repositories, such as the experimental unified repositories.

The composition of this dict is described below.

source Where this changeset came from.

The value will almost always be push.

(Not present in ‘‘exchange/hgpushes/v1‘‘ messages)

Each pushlog_pushes entry consists of the following keys:

pushid Integer pushlog ID.

time Integer UNIX timestamp the push occurred, as recorded by the pushlog.

user The authenticated user that performed the push. Typically an e-mail address.

push_json_url URL of JSON endpoint that describes this push in more detail.

push_full_json_url URL of JSON endpoint that describes this push in even more detail (lists files that
changed, etc). See Pushlog for what the json-pushes JSON API returns.

newrepo.1

This message is sent when a new repository is created.

This message has the following fields:

repo_url URL of the created repository.

obsolete.1

This message describes obsolescence markers added on a repository.

Obsolescence markers tell when a changeset was obsoleted and should no longer be exposed to the outside world,
effectively hiding it from history.

Essentially, an obsolescence marker contains a precursor node and a list of 0 or more successor nodes. The precursor
node is hidden as a result of the creation of a marker. The successor nodes are the nodes that replaced the precursor
node. If there is no replacement (the changeset was dropped), the list of successors is empty.

This message has the following fields:

markers A list of dicts describing each obsolescence marker in detail. The format of these entries is described below.

repo_url The URL of the repository this marker applies to.

Each markers entry is a dict with the following fields:

precursor Dict describing the precursor node.

successors List of dicts describing the successor nodes.

user String user that produced this marker (this comes from Mercurial’s ui.username config option).

time Float corresponding to number of seconds since UNIX epoch time when this marker was produced.

The fields of a precursor or successors dict are as follows:

node 40 character SHA-1 of changeset.

2.5. hg.mozilla.org 71

Mozilla Version Control Tools, Release 0

known Bool indicating whether the changeset is known to the repo. Sometimes obsolescence markers reference
changesets not pushed to the repo. This flag helps consumers know whether they might be able to query the
repo for more info about this changeset.

visible Bool indicating whether the changeset is visible to the repository at the time the message was created. If
false, the changeset is known but hidden. Value is null if the changeset is known known.

Even if the value is true, there is no guarantee a consumer of this message will be able to access changeset
metadata from the repository, as a subsequent obsolescence marker could have made this changeset hidden by
the time the consumer sees this message and queries the repository. This is one reason why this data structure
contains changeset metadata that would normally be obtained by the consumer.

desc String of commit message for the changeset. May be null if the changeset is not known to the repo.

push Dict describing the pushlog entry for this changeset.

Will be null if the changeset is not known or if there isn’t a pushlog entry for it.

The content of this dict matches the entries from pushlog_pushes from changeset.1 messages.

Examples

An example message payload is as follows:

{
"type": "changegroup.1",
"data": {
"repo_url": "https://hg.mozilla.org/try",
"heads": ["eb6d9371407416e488d2b2783a5a79f8364330c8"],
"pushlog_pushes": [{

"time": 14609750810,
"pushid": 120040,
"user": "tlin@mozilla.com",
"push_json_url": "https://hg.mozilla.org/try/json-pushes?version=2&

→˓startID=120039&endID=120040",
"push_full_json_url": "https://hg.mozilla.org/try/json-pushes?version=2&full=1&

→˓startID=120039&endID=120040"
}]

}
}

This data structure would be available at message['payload'] in a Pulse message, for example.

Pulse Notifications

hg.mozilla.org guarantees at least once delivery of Pulse messages when a push is performed to the server.

Pulse messages are written to the following exchanges:

• exchange/hgpushes/v1

• (experimental) exchange/hgpushes/v2

The routing key for each message is the relative path of the repository on hg.mozilla.org (e.g. mozilla-central
or integration/autoland).

The payload of the JSON messages published to Pulse depend on the exchange.

The exchange/hgpushes/v1 exchange only supported publishing push events that described a push. The
exchange/hgpushes/v2 exchange supports publishing multiple event types.

72 Chapter 2. Table of Contents

https://wiki.mozilla.org/Auto-tools/Projects/Pulse
https://tools.taskcluster.net/pulse-inspector/#!((exchange:exchange/hgpushes/v1,routingKeyPattern:%23))
https://tools.taskcluster.net/pulse-inspector/#!((exchange:exchange/hgpushes/v2,routingKeyPattern:%23))

Mozilla Version Control Tools, Release 0

Important: New message types can be added to the exchange/hgpushes/v2 exchange at any time.

Consumers should either ignore unknown message types or fail fast when encountering one.

Messages on the exchange/hgpushes/v2 exchange have the following structure:

{
"_meta": {}, // private
"payload": {

"type": .., // String denoting the message type.
"data": { .. }, // Dictionary holding details about the event, as above

}
}

SNS Notifications

Change events for hg.mozilla.org are published to Amazon Simple Notification Service (SNS).

Messages are published to SNS topic arn:aws:sns:us-west-2:699292812394:hgmo-events.

The message is JSON with the following keys:

type String denoting the message type.

data_url URL where JSON describing the event can be obtained.

data (optional) Dictionary holding details about the event.

external (optional) Boolean indicating whether data is only available externally. If this key is present, data will
not be present and the only way to obtain data is to query data_url.

repo_url (optional) URL of repository from which this data originated. This key is only present if data is not
present, as this value is already recorded inside data. The main purpose of this key is to facilitate message
filtering without having to query data_url to determine which repository the message belongs to.

The message types and their data are described later in this document.

At least once delivery is guaranteed. And, new message types may be introduced at any time.

2.5.6 Automated Clients

Do you have or want to run an automated consumer of hg.mozilla.org? Then this document is for you.

Read on to learn about the should and should nots of automatically consuming the hg.mozilla.org service.

When reading sections that recommend not doing something, keep in mind that https://hg.mozilla.org/ is ultimately a
service in support of various Mozilla projects. The recommendation to not do something is not a hard or fast no: it is
more of a preference so we can avoid operational issues. If you find yourself having to perform a lot of work to abide
by the guidelines in this document, you should approach the hg.mozilla.org service operators to discuss alternatives to
make your job easier. The hgmo-service-discuss@mozilla.com mailing list (contents are private) is a good way to get
in touch.

Identifying Clients

Automated requests to https://hg.mozilla.org/ that belong to a well-defined service should use a custom User-Agent
HTTP request header to identify themselves. This is so server operators can better assess the impact that individual
clients have on the server.

2.5. hg.mozilla.org 73

https://aws.amazon.com/sns/
https://hg.mozilla.org/
mailto:hgmo-service-discuss@mozilla.com
https://hg.mozilla.org/

Mozilla Version Control Tools, Release 0

Important: Server operators reserve the right to block generic User-Agent values that are contributing abnormally
high load. Using a custom User-Agent lessens the possibility of being blocked due to User-Agent name conflict with
a malicious agent also not using a custom User-Agent.

Limiting Concurrent Requests

https://hg.mozilla.org/ does not have infinite capacity and clients issuing several concurrent HTTP requests can cause
capacity problems on the server.

In general, any single logical client should not attempt to issue more than 10 concurrent HTTP requests. This limit
applies whether the requests are issued from a single IP or across several IPs.

The fewer concurrent requests that are issued, the lesser the load impact on the server. However, this obviously
increases the time for the client to finish all the requests. So it’s a trade-off.

Limiting Request Volume

Again, https://hg.mozilla.org/ does not have infinite capacity. Clients issuing thousands of HTTP requests can con-
tribute significant server load, especially to certain endpoints.

Clients should be respectful of server capacity limitations and try to limit the total number of requests. This especially
holds true for requests that take more than 1.0s to complete or transfer a lot of data from server to client.

Repository data on https://hg.mozilla.org/ (including pushlog and other custom data) can often be cloned to a local
machine. Such is the nature of distributed version control. Once on the local machine, one can use hg serve to run a
local HTTP server which exposes much of the same data as https://hg.mozilla.org/. Or one can use hg commands to
access repository data.

Clients needing to query large parts of the repository (e.g. to collect information on every changeset or file) are highly
encouraged to query data offline, if possible.

Obtaining Recent Changes

It is common for clients to want to know when a change occurs on hg.mozilla.org so that they can do something in
reaction to it.

There are two mechanisms for determining when changes occur: subscription-based notifications and polling HTTP-
based APIs on hg.mozilla.org.

For the push-based notifications, clients can subscribe to e.g. SNS or Pulse queues and receive messages milliseconds
after they are published by hg.mozilla.org.

For polling, typically the pushlog HTTP+JSON API is used. Clients need to periodically query the pushlog and see if
anything has changed since the last query.

The recommend mechanism for learning about recent changes is to subscribe to one of the push-based notifications
(e.g. SNS or Pulse). This allows clients to see changes to any repository milliseconds after it occurs.

While it shouldn’t occur frequently, subscription-based mechanisms can be lossy. e.g. if the subscriber is detached -
possibly for a long-enough time - it may lose an event. For that reason, robust consumers without a tolerance for data
loss should supplement subscription-based monitoring with pushlog polling. If subscriptions lose an event, the polling
fallback should catch any events that fell through. Because subscriptions shouldn’t be lossy, the pushlog polling
interval can be relatively high - say every 5 minutes.

74 Chapter 2. Table of Contents

https://hg.mozilla.org/
https://hg.mozilla.org/
https://hg.mozilla.org/
https://hg.mozilla.org/

Mozilla Version Control Tools, Release 0

If clients want to react to an event in an expedient manner (say under a minute), they should use subscription-based
notifications.

If latency is not important, it is acceptable to use polling.

Important: Clients should not poll repository endpoints on https://hg.mozilla.org/ more frequently than once every
minute, as this can contribute significant load to the servers.

If clients really need to react to events with that little latency, they should be using subscription-based notification
mechanisms.

2.5.7 Cloning from Pre-Generated Bundles

hg.mozilla.org supports offloading clone requests to pre-generated bundle files stored in a CDN and Amazon
S3. This results in drastically reduced server load (which helps prevent outages due to accidental, excessive
load) and frequently results in faster clone times.

How It Works

When a Mercurial client clones a repository, it looks to see if the server is advertising a list of available, pre-generated
bundle files. If it is, it looks at the list, finds the most appropriate entry, downloads and applies that bundle, then does
the equivalent of an hg pull against the original Mercurial server to fetch new data since the time the bundle file
was produced. The end result is a faster clone with drastically reduced load on the Mercurial server.

Enabling

If you are running Mercurial 3.7 or newer, support for cloning from pre-generated bundles is built-in to Mercurial
itself and enabled by default.

If you are running Mercurial 3.6, support is built-in but requires enabling a config option:

[experimental]
clonebundles = true

If you are running a Mercurial older than 3.6, upgrade to leverage the clone bundles feature.

Mercurial 4.1 is required to support zstd bundles, which are smaller and faster than bundles supported by earlier
versions.

Configuring

hg.mozilla.org will advertise multiple bundles/URLs for each repository. Each listing varies by:

• Bundle type

• Server location

By default, Mercurial uses the first entry in the server-advertised bundles list that the client supports.

The clone bundles feature allows the client to define preferences of which bundles to fetch. The way this works is the
client defines some key-value pairs in its config and bundles having these attributes will be upweighted.

2.5. hg.mozilla.org 75

https://hg.mozilla.org/

Mozilla Version Control Tools, Release 0

Bundle Attributes on hg.mozilla.org

On hg.mozilla.org, following attributes are defined in the manifest:

BUNDLESPEC This defines the type of bundle.

We currently generate bundles with the following specifications: zstd-v2, gzip-v1, gzip-v2,
none-packed1.

REQUIRESNI Indicates whether the URL requires SNI (a TLS extension). This is set to true for URLs where
multiple certificates are installed on the same IP and SNI is required. It is undefined if SNI is not required.

ec2region The EC2 region the bundle file should be served from. We support us-west-1, us-west-2,
us-east-1, eu-central-. You should prefer the region that is closest to you.

gceregion The GCE region the bundle file should be served from. We support us-central1 and us-west1 at
this time.

cdn Indicates whether the URL is on a CDN. Value is true to indicate the URL is a CDN. All other values or
undefined values are to be interpretted as not a CDN.

Example Manifests

Here is an example clone bundles manifest:

https://hg.cdn.mozilla.net/mozilla-unified/82c75fd3a2de796351296592c459ab4aa4cd0baf.
→˓zstd-max.hg BUNDLESPEC=zstd-v2 REQUIRESNI=true cdn=true
https://s3-us-west-2.amazonaws.com/moz-hg-bundles-us-west-2/mozilla-unified/
→˓82c75fd3a2de796351296592c459ab4aa4cd0baf.zstd-max.hg BUNDLESPEC=zstd-v2
→˓ec2region=us-west-2
https://s3-us-west-1.amazonaws.com/moz-hg-bundles-us-west-1/mozilla-unified/
→˓82c75fd3a2de796351296592c459ab4aa4cd0baf.zstd-max.hg BUNDLESPEC=zstd-v2
→˓ec2region=us-west-1
https://s3-external-1.amazonaws.com/moz-hg-bundles-us-east-1/mozilla-unified/
→˓82c75fd3a2de796351296592c459ab4aa4cd0baf.zstd-max.hg BUNDLESPEC=zstd-v2
→˓ec2region=us-east-1
https://s3-eu-central-1.amazonaws.com/moz-hg-bundles-eu-central-1/mozilla-unified/
→˓82c75fd3a2de796351296592c459ab4aa4cd0baf.zstd-max.hg BUNDLESPEC=zstd-v2
→˓ec2region=eu-central-1
https://hg.cdn.mozilla.net/mozilla-unified/82c75fd3a2de796351296592c459ab4aa4cd0baf.
→˓gzip-v2.hg BUNDLESPEC=gzip-v2 REQUIRESNI=true cdn=true
https://s3-us-west-2.amazonaws.com/moz-hg-bundles-us-west-2/mozilla-unified/
→˓82c75fd3a2de796351296592c459ab4aa4cd0baf.gzip-v2.hg BUNDLESPEC=gzip-v2 ec2region=us-
→˓west-2
https://s3-us-west-1.amazonaws.com/moz-hg-bundles-us-west-1/mozilla-unified/
→˓82c75fd3a2de796351296592c459ab4aa4cd0baf.gzip-v2.hg BUNDLESPEC=gzip-v2 ec2region=us-
→˓west-1
https://s3-external-1.amazonaws.com/moz-hg-bundles-us-east-1/mozilla-unified/
→˓82c75fd3a2de796351296592c459ab4aa4cd0baf.gzip-v2.hg BUNDLESPEC=gzip-v2 ec2region=us-
→˓east-1
https://s3-eu-central-1.amazonaws.com/moz-hg-bundles-eu-central-1/mozilla-unified/
→˓82c75fd3a2de796351296592c459ab4aa4cd0baf.gzip-v2.hg BUNDLESPEC=gzip-v2 ec2region=eu-
→˓central-1
https://hg.cdn.mozilla.net/mozilla-unified/82c75fd3a2de796351296592c459ab4aa4cd0baf.
→˓packed1-gd.hg BUNDLESPEC=none-packed1;requirements%3Dgeneraldelta%2Crevlogv1
→˓REQUIRESNI=true cdn=true
https://s3-us-west-2.amazonaws.com/moz-hg-bundles-us-west-2/mozilla-unified/
→˓82c75fd3a2de796351296592c459ab4aa4cd0baf.packed1-gd.hg BUNDLESPEC=none-packed1;
→˓requirements%3Dgeneraldelta%2Crevlogv1 ec2region=us-west-2 (continues on next page)

76 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

(continued from previous page)

https://s3-us-west-1.amazonaws.com/moz-hg-bundles-us-west-1/mozilla-unified/
→˓82c75fd3a2de796351296592c459ab4aa4cd0baf.packed1-gd.hg BUNDLESPEC=none-packed1;
→˓requirements%3Dgeneraldelta%2Crevlogv1 ec2region=us-west-1
https://s3-external-1.amazonaws.com/moz-hg-bundles-us-east-1/mozilla-unified/
→˓82c75fd3a2de796351296592c459ab4aa4cd0baf.packed1-gd.hg BUNDLESPEC=none-packed1;
→˓requirements%3Dgeneraldelta%2Crevlogv1 ec2region=us-east-1
https://s3-eu-central-1.amazonaws.com/moz-hg-bundles-eu-central-1/mozilla-unified/
→˓82c75fd3a2de796351296592c459ab4aa4cd0baf.packed1-gd.hg BUNDLESPEC=none-packed1;
→˓requirements%3Dgeneraldelta%2Crevlogv1 ec2region=eu-central-1

As you can see, listed bundle URLs vary by bundle type (compression and format) and location. For each repository
we generate bundles for, we generate:

1. A zstd bundle (either default compression or maximum compression depending on repo utilization)

2. A gzip bundle (the default compression format)

3. A streaming bundle file (larger but faster)

For each of these bundles, we upload them to the following locations:

1. CloudFront CDN

2. S3 in us-west-2 region

3. S3 in us-west-1 region

4. S3 in us-east-1 region

5. S3 in eu-central-1 region

Which Bundles to Prefer

The zstd bundle hosted on CloudFront is the first entry and is thus preferred by clients by default.

zstd bundles are the smallest bundles and for most people they are the ideal bundle to use.

Note: Mercurial 4.1 is required to use zstd bundles. If an older Mercurial client is used, larger, non-zstd bundles will
be used.

If you have a super fast internet connection, you can prefer the packed/streaming bundles. This will transfer 30-40%
more data on average, but will require almost no CPU to apply. If you can fetch from S3 or CloudFront at 1 Gbps
speeds, you should be able to clone Firefox in under 60s.:

HG 3.7+
[ui]
clonebundleprefers = VERSION=packed1

HG 3.6
[experimental]
clonebundleprefers = VERSION=packed1

Manifest Advertisement to AWS Clients

If a client in Amazon Web Services (e.g. EC2) is requesting a bundle manifest and that client is in an AWS region
where bundles are hosted in S3, the advertised manifest will only show S3 URLs for the same AWS region. In addition,

2.5. hg.mozilla.org 77

Mozilla Version Control Tools, Release 0

stream clone bundles are the highest priority bundle.

This behavior ensures that AWS transfer are intra-region (which means they are fast and don’t result in a billable AWS
event) and that hg clone completes as fast as possible (stream clone bundles are faster than gzip bundles).

Important: If you have machinery in an AWS region where we don’t host bundles, please let us know. There’s a
good chance that establishing bundles in your region is cheaper than paying the cross-region transfer costs (intra-region
transfer is free).

Manifest Advertisements to Mozilla Offices

If the client request appears to originate from a Mozilla office network, we make the assumption that the network
speed and bandwidth are sufficient to always prefer the high-speed streamed clone bundles.

Which Repositories Have Bundles Available

Bundles are automatically generated for repositories that are high volume (in terms of repository size and clone fre-
quency) or have a need for bundles.

The list of repositories with bundles enabled can be found at https://hg.cdn.mozilla.net/. A JSON document describing
the bundles is available at https://hg.cdn.mozilla.net/bundles.json.

If you think bundles should be made available for a particular repository, let a server operator know by filing a
Developer Services :: hg.mozilla.org bug or by asking in #vcs on irc.mozilla.org.

2.5.8 Contributing

Repositories and Relevant Files

Most code for hg.mozilla.org and related services can be found in the version-control-tools repo. In this repo, the
following directories are relevant:

ansible/roles/hg-ssh Ansible role for the hg.mozilla.org SSH/master servers.

ansible/roles/hg-ssh-server Shared Ansible role for Mercurial SSH servers.

ansible/roles/hg-web Ansible role for the hg.mozilla.org HTTP/mirror servers.

docs/hgmo Sphinx documentation related to hg.mozilla.org (you are reading this now).

hgext Various Mercurial extensions. Many of which are used on hg.mozilla.org.

hgext/hgmo Contains hodgepodge of Mercurial customizations specific to hg.mozilla.org.

hghooks Mercurial hooks that run (primarily) on hg.mozilla.org.

hgserver Mercurial code and tests specific to Mercurial servers.

hgtemplates Mercurial templates. Contains both upstream templates and Mozilla customizations.

hgtemplates/gitweb_mozilla Fork of the gitweb Mercurial web style with Mozilla customizations. If you want to
hack the theming on hg.mozilla.org, this is what you modify.

hgwsgi WSGI and Mercurial config files for repos on hg.mozilla.org.

pylib/mozautomation Python package containing utility code for things like defining names and URLs of common
repos, parsing commit messages, etc.

78 Chapter 2. Table of Contents

https://hg.cdn.mozilla.net/
https://hg.cdn.mozilla.net/bundles.json
https://hg.mozilla.org/hgcustom/version-control-tools

Mozilla Version Control Tools, Release 0

pylib/mozhg Python package containing shared Mercurial code (code using Mercurial APIs and therefore covered by
the GPL).

pylib/vcsreplicator Code for managing replication of data from Mercurial master server to read-only mirrors.

Terraform code for managing associated AWS infrastructure can be found in the devservices-aws repo under the hgmo
directory.

Hacking the Theming

The version-control-tools repository contains all the files necessary to run a local hgweb server that behaves close
enough to the actual server to facilitate hacking on the theming (the visual layout of the site).

To run a local server, run the following:

$ hg --config extensions.hgmo=/path/to/vct/hgext/hgmo serve --hgmo

Among other things, the hgmo extension adds a flag to hg serve that activates hg.mozilla.org mode. This will
activate some other extensions and configure the style settings to run out of the version-control-tools repository.

Styles for Mercurial are checked into the hgtemplates/ directory in version-control-tools. The default style for
Mercurial is paper. However, hg.mozilla.org runs the gitweb_mozilla theme. This theme is based off of the
gitweb theme.

The hgtemplates/gitweb_mozilla/map file is the main file mapping template names to their values. Some
templates are large and split into their own .tmpl file.

Hint: To figure out what templates are used for various URLs, read hg help hgweb.

Hint: If you modify a template file, changes should be visible on next page load: no server restart is necessary.
However, some pages are cached, so you may need to force reload the page in your browser via shift-reload or similar.

2.5.9 Firefox Release Data

hg.mozilla.org has facilities for aggregating and exposing information about Firefox releases performed from Mercu-
rial changesets.

This feature is currently only enabled on the mozilla-central repository.

Features

Release Info on Changeset Pages

Changeset pages like https://hg.mozilla.org/mozilla-central/rev/1362c0928dc1 display information on Firefox releases
in relation to that changeset.

Most pages should have a first release with and last release without section. Exceptions include changesets in the very
early and very modern repository history. (This info isn’t displayed unless we can find a release in both directions.)

If a release was made from that changeset, there will also be information on those releases. e.g. https://hg.mozilla.
org/mozilla-central/rev/09a4282d1172. This includes a link to the pushlog containing changesets landed between two
releases.

2.5. hg.mozilla.org 79

https://github.com/mozilla-platform-ops/devservices-aws
https://hg.mozilla.org/mozilla-central
https://hg.mozilla.org/mozilla-central/rev/1362c0928dc1
https://hg.mozilla.org/mozilla-central/rev/09a4282d1172
https://hg.mozilla.org/mozilla-central/rev/09a4282d1172

Mozilla Version Control Tools, Release 0

Listing of Known Releases

The firefoxreleases web command renders known Firefox releases from changesets in a repo. e.g. https:
//hg.mozilla.org/mozilla-central/firefoxreleases.

A JSON view is available by using the json-firefoxreleases web command. e.g. https://hg.mozilla.org/
mozilla-central/json-firefoxreleases.

Filtering by platform is available by specifying the platform query string argument. e.g. https://hg.mozilla.org/
mozilla-central/firefoxreleases?platform=win32.

Note: If you want to read this data from machines, a better source might be https://mozilla-services.github.io/
buildhub/.

Development Info

Please file bugs and feature requests against the hg.mozilla.org Bugzilla component.

For real time support, make noise in #vcs on irc.mozilla.org.

2.5.10 Replication

As described at Architecture, hg.mozilla.org consists of a read/write master server available via SSH and a set of
read-only mirrors available over HTTP. As changes are pushed to the master server, they are replicated to the read-only
mirrors.

VCSReplicator Introduction

Version Control System Replicator (vcsreplicator - pylib/vcsreplicator) is a modern system for replicating
version control data.

vcsreplicator is built on top of a distributed transaction log. When changes (typically pushes) are performed, an event
is written to the log. Downstream consumers read from the log (hopefully in near real time) and replay changes that
were made upstream.

The distributed transaction log is built on top of Apache Kafka <https://kafka.apache.org/>. Unlike other queueing
and message delivery systems (such as AMQP/RabbitMQ), Kafka provides guarantees that satisfy our requirements.
Notably:

• Kafka is a distributed system and can survive a failure in a single node (no single point of failure).

• Clients can robustly and independently store the last fetch offset. This allows independent replication mirrors.

• Kafka can provide delivery guarantees matching what is desired (order preserving, no message loss for acknowl-
edged writes).

• It’s fast and battle tested by a lot of notable companies.

For more on the subject of distributed transaction logs, please read this excellent article from the people behind Kafka.

vcsreplicator is currently designed to replicate changes from a single leader Mercurial server to several, independent
mirror servers. It supports replicating:

• changegroup data

• pushkey data (bookmarks, phases, obsolescence markers, etc)

80 Chapter 2. Table of Contents

https://hg.mozilla.org/mozilla-central/firefoxreleases
https://hg.mozilla.org/mozilla-central/firefoxreleases
https://hg.mozilla.org/mozilla-central/json-firefoxreleases
https://hg.mozilla.org/mozilla-central/json-firefoxreleases
https://hg.mozilla.org/mozilla-central/firefoxreleases?platform=win32
https://hg.mozilla.org/mozilla-central/firefoxreleases?platform=win32
https://mozilla-services.github.io/buildhub/
https://mozilla-services.github.io/buildhub/
https://bugzilla.mozilla.org/enter_bug.cgi?product=Developer%20Services&component=Mercurial%3A%20hg.mozilla.org
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying

Mozilla Version Control Tools, Release 0

• hgrc config files

• repository creation

Architecture

A cluster of servers form a Kafka cluster to expose a single logical network service. On hg.mozilla.org, that cluster
looks like the following:

A Kafka topic (i.e. a message queue) is created for messages describing repository change events.

A Mercurial extension is installed on the leader server (the server where writes go). When a Mercurial repository is
changed, a new message is published to Kafka.

For example, when a repository is created:

And when a new push occurs:

The published messages contain the repository name and details about the change that occurred.

Publishing to Kafka and Mercurial’s transaction are coupled: if we cannot write messages to Kafka, the repository
change operation is prevented or rolled back.

At a lower level on hg.mozilla.org, the pushdata Kafka topic contains 8 partitions and repository change messages
are written into 1 of 8 of those partitions.

2.5. hg.mozilla.org 81

Mozilla Version Control Tools, Release 0

82 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

Each repository deterministically writes to the same partition via a name-based routing mechanism plus hashing. For
example, the foo repository may always write to partition 1 but the bar repository may always write to partition 6.

Messages published to Kafka topics/partitions are ordered: if message A is published before message B, consumers
will always see A before B. This means the messages for a given repository are always consumed in chronological
order.

On each mirror, a vcsreplicator-consumer daemon process is bound to each partition in the pushdata topic.
These processes essentially monitor each partition for new messages.

When a new message is written to the partition, the consumer daemon reacts to that message. The consumer daemon
then takes an appropriate action for each message, often by invoking an hg process to complete an action. e.g. when
a repository is created:

2.5. hg.mozilla.org 83

Mozilla Version Control Tools, Release 0

Sometimes the replicated data is too large to fit in a Kafka message. In that case, the consumer will connect to the
leader server to obtain data.

Consumers react to new messages within milliseconds of them being published. And the same activity is occurring on
each consumer simultaneously and independently.

84 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

Consumers typically fully process a message within a few seconds. Events corresponding to big changes (such as
cloning a repository, large pushes, etc) can take longer - sometimes minutes.

We rely on repository change messages to have deterministic side-effects. i.e. independent consumers starting in the
same state that apply the same stream of messages should end up in an identical state. In theory, a consumer could
start from the very beginning of a Kafka topic, apply every message, and arrive at an identical state as the leader.

Consumers only process a single message per topic-partition simultaneously. This is to ensure complete ordering of
messages for a given repository and to ensure that messages are successfully processed at most once.

After a consumer successfully performs actions in reaction to a published message, it acknowledges that Kafka mes-
sage. Once a consumer has acknowledged a message, that message will never be delivered to that consumer again.

Kafka tracks acknowledged messages by recording the offset of the last acknowledged message within a given topic-
partition.

Each mirror maintains its own offsets into the various topic-partitions. If a mirror goes offline, Kafka will durably
store messages. When the consumer process comes back online, it will resume consuming messages at the last ac-
knowledged offset, picking up where it left off when it disconnected from Kafka.

Aggregated Push Data

Repository change messages may be written into multiple partitions to facilitate parallel consumption. Unfortunately,
this loses total ordering of messages since there is no ordering across Kafka partitions.

In addition, consumers - being on separate servers - don’t react to and acknowledge messages at exactly the same time.
i.e. there is always a window of time between message publish and it being fully consumed where different consumers
have different repository states due to being in different phases of processing a message. As an example, a fast server
may take 1s to process a push to a repository but a slow server may take 2s. There is a window of 1s where one server
has new state and another has old state. Exposing inconsistent state can confuse repository consumers.

The leader server runs a daemon that monitors the partition consumer offsets for all active consumers. When all active
consumers have acknowledged a message, the daemon re-published that fully-consumed message in a separate Kafka
topic - replicatedpushdatapending on hg.mozilla.org.

2.5. hg.mozilla.org 85

Mozilla Version Control Tools, Release 0

There is a single partition in the replicatedpushdatapending topic, which means all messages for all repos-
itories are available in a single, ordered stream. And those messages aren’t exposed until all active consumers have
processed them.

Each mirror runs a daemon that subscribes to this single topic-partition. This daemon will take appropriate actions for
each received message before acknowledging it.

The leader server also monitors consumer offsets in the replicatedpushdatapending topic-partition. When a
message is fully consumed, it is re-published to the replicatedpushdata Kafka topic.

The stream of messages in the replicatedpushdata Kafka topic represents all fully-replicated repository
changes acknowledged by all consumers.

This stream of fully-replicated messages can be consumed by consumers wish to react to events. e.g. on hg.mozilla.org,
we have a daemon that publishes messages to Pulse (a RabbitMQ broker) and Amazon SNS so 3rd party consumers
can get a notification when a repository even occurs and then implement their own derived actions (such as triggering
CI against new commits).

Minimizing the Inconsistency Window for Exposed Data

As mentioned above, there is a race condition between the vcsreplicator-consumer processes on different
servers fully processing and acknowledging a message written to the pushdata topic. This can lead to different
servers exposing different repository state at any given time.

We minimize this window by employing a multi-stage commit to expose new repository data.

The stream of repository change messages being written by the leader includes a message containing the set of re-
visions that are DAG heads that should be exposed by servers. When this message is initially published to the
pushdata topic, the vcsreplicator-consumer process performs a no-op when it sees this message. But
the message is copied into the replicatedpushdatapending topic when its offset is acknowledged.

The hgweb servers run a vcsreplicator-headsconsumer process that is similar to the
vcsreplicator-consumer process, except it only performs meaningful action for these messages con-
taining repository DAG heads.

When vcsreplicator-headsconsumer sees a heads message, it atomically writes out a file containing the set
of repository heads. Then it acknowledges the message.

86 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

A Mercurial extension loaded into the hgweb processes teaches Mercurial to use the file containing repository heads
to determine what data to publicly expose on the server. Even if the repository contains new repository data, unless
the new data is listed in the heads file, it won’t be visible to repository consumers.

The vcsreplicator-headsconsumer process is running on each mirror and the actions it is performing
are occurring independently: there is no central/shared data store recording which heads to expose. This means
there is still a race condition where each server writes out heads files at a different pace. However, because the
vcsreplicator-headsconsumer process is only writing out (usually) small files and because the process runs
at elevated priority, the timings on different servers is usually very tight and the inconsistency window is thus very
short - often just a few milliseconds. This window is so short as to not pose a significant problem.

Known Deficiencies

Shared Replication Log and Sequential Consumption

Consumer processes can only process 1 event at a time. Events from multiple repositories are written to a shared
replication log. Therefore, replication of repository X may be waiting on an event in repository Y to finish processing.
This can add unwanted replication latency. Or, if a consuming processes crashes or gets in an endless loop trying to
apply an event, consuming stalls.

Ideally, each repository would have its own replication event log and a pool of processes could consume events from
any available replication log. There would need to be locking on consumers to ensure multiple processes aren’t
operating on the same repository. Such a system may not be possible with Kafka since apparently Kafka does not scale
to thousands of topics and/or partitions. Although, hg.mozilla.org might be small enough for this to work. Alternate
message delivery systems could potentially address this drawback. Although many message delivery systems don’t
provide the strong guarantees about delivery and ordering that Kafka does.

Reliance on hg pull

Currently, pushing of new changegroup data results in hg pull being executed on mirrors. hg pull is robust and
mostly deterministic. However, it does mean that mirrors must connect to the leader server to perform the replication.
This means the leader’s availability is necessary to perform replication.

A replication system more robust to failure of the leader would store all data in Kafka. As long as Kafka is up, mirrors
would be able to synchronize. Another benefit of this model is that it would likely be faster: mirrors would have all to-
be-applied data immediately available and wouldn’t need to fetch it from a central server. Keep in mind that fetching
large amounts of data can add significant load on the remote server, especially if several machines are connecting at
once.

Another benefit of having all data in the replication log is that we could potentially store this bundle data in a key-value
store (like S3) and leverage Mercurial’s built in mechanism for serving bundles from remote URLs. The Mercurial
server would essentially serve hg pull requests by telling clients to fetch data from a scalable, possibly distributed
key-value store (such as a CDN).

A benefit of relying on hg pull based replication is it is simple: we don’t need to reinvent Mercurial data storage.
If we stop using hg pull, various types of data updates potentially fall through the cracks, especially if 3rd party
extensions are involved. Also, storing data in the replication log could explode the size of the replication log, leading
to its own scaling challenges.

Inconsistency Window on Mirrors

Mirrors replicate independently. And data applied by mirrors is available immediately. Therefore, there is a window
(hopefully small) where mirrors have inconsistent state of a repository.

2.5. hg.mozilla.org 87

Mozilla Version Control Tools, Release 0

If 2 mirrors are behind the same load balancer and requests are randomly routed to each of the mirrors, there is a
chance a client may encounter inconsistent state. For example, a client may poll the pushlog to see what changesets
are available then initiate a hg pull -r <rev> to fetch a just-pushed changeset. The pushlog from an in sync
mirror may expose the changeset. But the hg pull hits an out-of-date mirror and is unable to find the requested
changeset.

There are a few potential mechanisms to rectify this problem.

Mirrors could use shared storage. Mercurial’s built-in transaction semantics ensure that clients don’t read data that
hasn’t been fully committed yet. This is done at the filesystem level so any networked filesystem (like NFS) that honors
atomic file moves should enable consistent state to be exposed to multiple consumers. However, networked filesystems
have their own set of problems, including performance and possibly single points of failure. Not all environments are
able to support networked filesystems either.

A potential (and yet unexplored) solution leverages ZooKeeper and Mercurial’s filtered repository mechanism. Mer-
curial’s repository access layer goes through a filter that can hide changesets from the consumer. This is frequently
encountered in the context of obsolescence markers: obsolescence markers hide changesets from normal view. How-
ever, the changesets can still be accessed via the unfiltered view, which can be accessed by calling a hg command with
the --hidden argument.

It might be possible to store the set of fully replicated heads for a given repository in ZooKeeper. When a request
comes in, we look up which heads have been fully replicated and only expose changesets up to that point, even if the
local repository has additional data available.

We would like to avoid an operational dependency on ZooKeeper (and Kafka) for repository read requests. (Currently,
reads have no direct dependency on the availability of the ZooKeeper and Kafka clusters and we’d like to keep it this
way so points of failure are minimized.) Figuring out how to track replicated heads in ZooKeeper so mirrors can
expose consistent state could potentially introduce a read-time dependency.

Related to this problem of inconsistent state of mirrors is knowing when to remove a failing mirror from service. If
a mirror encounters a catastrophic failure of its replication mechanism but the Mercurial server is still functioning,
we would ideally detect when the mirror is drifting out of sync and remove it from the pool of mirrors so clients
don’t encounter inconsistent state across the mirror pool. This sounds like an obvious thing to do. But automatically
removing machines can be dangerous, as being too liberal in yanking machines from service could result in removing
machines necessary to service current load. When you consider that replication issues tend to occur during periods of
high load, you can imagine what bad situations automatic decisions could get us in. Extreme care must be practiced
when going down this road.

Data Loss

Data loss can occur in a few scenarios.

Depending on what data is changed in the push, a single push may result in multiple replication messages being sent.
For example, there could be a changegroup message and a pushkey message. The messages aren’t written to Kafka
as an atomic unit. Therefore, it’s possible for 1 message to succeed, the cluster to fail, and the next message to fail,
leaving the replication log in an inconsistent state.

In addition, messages aren’t sent until after Mercurial closes the transaction committing data to the repository. It’s
therefore possible for the transaction to succeed but the message send to fail.

Both scenarios are mitigated by writing a no-op heartbeat message into the replication log as one of the final steps
before transaction close. If this heartbeat can’t be send, the transaction is aborted. The reasoning here is that by testing
the replication log before closing the transaction, we have a pretty good indication whether the replication log will be
writeable after transaction close. However, there is still a window for failure.

In the future, we should write a single replication event to Kafka for each push (requires bundle2 on the client) or write
events to Kafka as a single unit (if that’s even supported). We should also support rolling back the previous transaction
in Mercurial if the post transaction close message(s) fails to write.

88 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

Installation and Configuring

vcsreplicator requires Python 2.7+, access to an Apache Kafka cluster, and an existing Mercurial server or repository.

For now, we assume you have a Kafka cluster configured. (We’ll write the docs eventually.)

Mercurial Extension Installation

On a machine that is to produce or consume replication events, you will need to install the vcsreplicator Python
package:

$ pip install /version-control-tools/pylib/vcsreplicator

On the leader machine, you will need to install a Mercurial extension. Assuming this repository is checked out in
/version-control-tools, you will need the following in an hgrc file (either the global one or one inside a
repository you want replicated):

[extensions]
Load it by Python module (assuming it is in sys.path for the
Mercurial server processes)
vcsreplicator.hgext =

Load it by path.
vcsreplicator = /path/to/vcsreplicator/hgext.py

Producer hgrc Config

You’ll need to configure your hgrc file to work with vcsreplicator:

[replicationproducer]

Kafka host(s) to connect to.
hosts = localhost:9092

Kafka client id
clientid = 1

Kafka topic to write pushed data to
topic = pushdata

How to map local repository paths to partions. You can:
#
* Have a single partition for all repos
* Map a single repo to a single partition
* Map multiple repos to multiple partitions
#
The partition map is read in sorted order of the key names.
Values are <partition>:<regexp>. If the partitions are a comma
delimited list of integers, then the repo path will be hashed and
routed to the same partition over time. This ensures that all
messages for a specific repo are routed to the same partition and
thus consumed in a strict first in first out ordering.
#
Map {repos}/foo to partition 0
Map everything else to partitions 1, 2, 3, and 4.

(continues on next page)

2.5. hg.mozilla.org 89

Mozilla Version Control Tools, Release 0

(continued from previous page)

partitionmap.0foo = 0:\{repos\}/foo
partitionmap.1bar = 1,2,3,4:.*

Required acknowledgement for writes. See the Kafka docs. -1 is
strongly preferred in order to not lose data.
reqacks = -1

How long (in MS) to wait for acknowledgements on write requests.
If a write isn't acknowledged in this time, the write is cancelled
and Mercurial rolls back its transaction.
acktimeout = 10000

Normalize local filesystem paths for representation on the wire.
This both enables replication for listed paths and enables leader
and mirrors to have different local filesystem paths.
[replicationpathrewrites]
/var/repos/ = {repos}/

Consumer Config File

The consumer daemon requires a config file.

The [consumer] section defines how to connect to Kafka to receive events. You typically only need to define it on
the follower nodes. It contains the following variables:

hosts Comma delimited list of host:port strings indicating Kafka hosts.

client_id Unique identifier for this client.

connect_timeout Timeout in milliseconds for connecting to Kafka.

topic Kafka topic to consume. Should match producer’s config.

group Kafka group the client is part of.

You should define this to a unique value.

The [path_rewrites] section defines mappings for how local filesystem paths are normalized for storage in log
messages and vice-versa.

This section is not required. Presence of this section is used to abstract storage-level implementation details and to
allow messages to define a repository without having to use local filesystem paths. It’s best to explain by example.
e.g.:

[path_rewrites]
/repos/hg/ = {hg}/

If a replication producer produces an event related to a repository under /repos/hg/ - let’s say /repos/hg/
my-repo, it will normalize the path in the replication event to {hg}/my-repo. You could add a corresponding
entry in the config of the follower node:

[path_rewrites]
{hg}/ = /repos/mirrors/hg/

When the consumer sees {hg}/my-repo, it will expand it to /repos/mirrors/hg/my-repo.

Path rewrites are very simple. We take the input string and match against registered rewrites in the order they were
defined. Only a leading string search is performed - we don’t match if the first character is different. Also, the

90 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

match is case-insensitive (due to presence of case-insensitive filesystems that may report different path casing) but
case-preserving. If you have camelCase in your repository name, it will be preserved.

The [pull_url_rewrites] section is used to map repository paths from log messages into URLs suitable for
pulling from the leader. They work very similarly to [path_rewrites].

The use case of this section is that it allows consumers to construct URLs to the leader repositories at message pro-
cessing time rather than message produce time. Since URLs may change over time (don’t tell Roy T. Fielding) and
since the log may be persisted and replayed months or even years later, there needs to be an abstraction to redefine the
location of a repository later.

Note: The fact that consumers perform an hg pull and need URLs to pull from is unfortunate. Ideally all repository
data would be self-contained within the log itself. Look for a future feature addition to vcsreplicator to provide self-
contained logs.

Aggregator Config File

The aggregator daemon (the entity that copies fully acknowledged messages into a new topic) has its own config file.

All config options are located in the [aggregator] section. The following config options are defined.

hosts Comma delimited list of host:port strings indicating Kafka hosts.

client_id Unique identifier for this client.

connect_timeout Timeout in milliseconds for connecting to Kafka.

monitor_topic The Kafka topic that will be monitored (messages will be copied from).

monitor_groups_file Path to a file listing the Kafka groups whose consumer offsets will be monitored to determine
the most recent acknowledged offset. Each line in the file is the name of a Kafka consumer group.

ack_group The consumer group to use in monitor_topic that the aggregator daemon will use to record which
messages it has copied.

aggregate_topic The Kafka topic that messages from monitor_topic will be copied to.

Upgrading Kafka

It is generally desirable to keep Kafka on an up-to-date version, to benefit from bugfixes and performance improve-
ments. Upgrading the hg.mozilla.org Kafka instances can be done via a rolling upgrade, allowing the replication
system to continue working with no downtime. Kafka also uses Apache Zookeeper as a distributed configuration
service, and you may wish to upgrade Zookeeper at the same time as Kafka. The steps to do so are as follows:

Note: While these steps will likely cover all upgrade requirements, there is no guarantee that Apache will not change
the upgrade process in the future. Make sure to check the release notes for any breaking changes to both application
code and the upgrade procedure before moving forward.

Note: You should perform the Zookeeper and Kafka upgrades independently, to minimize the risk of failure and
avoid debugging two applications if something goes wrong. See https://kafka.apache.org/documentation/#upgrade
and https://wiki.apache.org/hadoop/ZooKeeper/FAQ#A6

2.5. hg.mozilla.org 91

https://kafka.apache.org/documentation/#upgrade
https://wiki.apache.org/hadoop/ZooKeeper/FAQ#A6

Mozilla Version Control Tools, Release 0

Steps for both applications

Both Kafka and Zookeeper are deployed from a tarball which is uploaded to a Mozilla owned Amazon S3 bucket. We
need to upload our new Kafka/Zookeeper tarballs to this bucket and keep their SHA 256 hashsum to ensure the correct
file is downloaded.

1. Upload new package archives to https://s3-us-west-2.amazonaws.com/moz-packages/<package name>

2. Calculate the sha256 hash of the uploaded archives.

3. Update version-control-tools/ansible/roles/kafka-broker/tasks/main.yml with the new package names and
hashes.

Zookeeper

To upgrade Zookeeper, simply deploy the updated code to hg.mozilla.org and then run systemctl restart zookeeper
serially on each host to perform the upgrade. Easy!

Kafka

To upgrade Kafka, some additional steps must be performed if message format or wire protocol changes have been
made between your current and updated versions. For example, when upgrading from 0.8.2 to 1.1.0, both message
formats and wire protocol changes were made, so all of the following changes must be made.

4. Before updating the code, advertise the message format and protocol versions used
by the current Kafka instance in the server config (kafka-server.properties) using the
following properties: - inter.broker.protocol.version=CURRENT_KAFKA_VERSION -
log.message.format.version=CURRENT_MESSAGE_FORMAT_VERSION

5. Deploy code in the previously updated archive to hg.mozilla.org.

6. Serially run systemctl restart kafka.service on each broker to update the code.

7. Update inter.broker.protocol.version to the version of Kafka you are upgrading to and run systemctl restart
kafka.service serially once again.

8. Update log.message.format.version to the version of Kafka you are upgrading to and run systemctl restart
kafka.service serially once again.

Note: After running each of the restart commands, you should tail the Kafka logs on the newly updated server, as
well as a server that has yet to be updated, to make sure everything is working smoothly.

2.5.11 History of Replication Systems

This document aims to describe the historical approaches to repository replication used by hg.mozilla.org. Reading
this document should leave readers with an understanding of what replication approaches were used, what worked,
what didn’t, why we switched strategies, etc.

Shared Filesystem / No Replication

When hg.mozilla.org was initially deployed, the SSH and HTTP servers used a shared filesystem via NFSv3. This
was architecturally simple. All writes were available atomically on the read-only HTTP servers.

92 Chapter 2. Table of Contents

https://s3-us-west-2.amazonaws.com/moz-packages

Mozilla Version Control Tools, Release 0

However, it suffered from a few serious limitations.

First, Mercurial makes heavy use of multiple files for repository storage. This I/O access model combined with NFS’s
overhead for I/O operations meant that many Mercurial operations were slow. Therefore hg.mozilla.org was slow.
Fixing this would require overhauling how Mercurial repository storage worked. Not an easy endeavor!

Second, the lack of a writable filesystem meant that Mercurial could not populate various repository cache files and
this made some Mercurial operations very slow. (The HTTP servers mounted the filesystem read-only for security
reasons.) This issue could have been worked around by writing a Mercurial extension to store cache files in a separate
location than .hg/cache. However, we never did so. Another workaround would have been to populate all the
necessary caches on the SSH server at push time so an HTTP server wouldn’t need to write caches since they were
already up-to-date.

Because NFS was making read-only operations on the HTTP servers substantially slower than they had the potential
to be, we decided to have the HTTP servers store repositories on their local filesystem and to use a replication system
to keep everything in sync.

Push-Time Synchronous Replication

The push-time replication system was our first replication system. It was very crude yet surprisingly effective:

1. A hook fired during the changegroup and pushkey hooks as part of hg push operations.

2. This hook executed the repo-push.sh script, which iterated through all mirrors and effectively ran ssh -l
hg <mirror> <repo>.

3. On each mirror, the SSH session effectively ran the mirror-pull scripts. This scripts essentially ran hg
pull ssh://hg.mozilla.org/<repo>.

Each mirror performed its replication in parallel. So the number of mirrors could be scaled without increasing repli-
cation time proportionally.

Replication was performed synchronously with the push. So, the client’s hg push command doesn’t finish until all
mirrors had completed their replication. This added a few seconds of latency to pushes.

There were several downsides with this replication method:

• Replication was synchronous with push, adding latency. This was felt most notably on the Try repository, which
took 9-15s to replicate. Other repositories typically would take 1-8s.

• If a mirror was slow, it was a long pole and slowed down replication for the push, adding yet more latency to
the push.

• If a mirror was down, the system was not intelligent enough to automatically remove the mirror from the mirrors
list. The master would retry several times before failing. This added latency to pushes.

• If a mirror was removed from the replication system, it didn’t re-sync when it came back online. Instead, it
needed to be manually re-synced by running a script. If a server rebooted for no reason, it could become out of
sync and someone may or may not re-sync it promptly.

• Each mirror synced and subsequently exposed data at different times. There was a window during replication
where mirror A would advertise data that mirror B did not yet have. This could lead to clients seeing inconsistent
repository state due to hitting different servers behind the load balancer.

In addition:

• There was no mechanism for replicating repository creation or deletion events.

• This was no mechanism for replicating hgrc changes.

2.5. hg.mozilla.org 93

Mozilla Version Control Tools, Release 0

• This replication system was optimized for a low-latency, high-availability intra-datacenter environment and
wouldn’t work well with a future, globally distributed hg.mozilla.org service (which would be far more prone
to network events such as loss of connectivity).

Despite all these downsides, the legacy replication system was surprisingly effective. Mirrors getting out of sync was
rare. Historically the largest problem was the increased push latency due to synchronous replication.

Kafka-Based Replication System

We wanted a replication system with fewer deficiencies than the push-time synchronous replication system described
in the section above. Notably, we wanted:

• Replication to be asynchronous with the hg push operation so people wouldn’t have to wait as long for their
operation to complete.

• Mirrors that were down or slow wouldn’t slow down hg push operations.

• Mirrors that went down would recover and catch up on replication backlog automatically when they return to
service.

• Repository creation and deletion events could be replicated.

• hgrc changes could be replicated.

• The window of inconsistency across the HTTP servers would be reduced.

We devised a replication system built on top of message queues backed by Apache Kafka to implement such a system.

This system is described in detail at Replication.

Essentially, Kafka provides a distributed transaction log. During hg push operations, the server writes messages
into Kafka describing the changes that were made to the repository. Daemons on mirrors react to new messages within
milliseconds, triggering the replication of repository data. The stream of messages is ordered and consumers record
their consume offset. This allows consumers to go offline and resume replication at the last consumed offset when
they come back online.

2.5.12 Operational Guide

Deploying to hg.mozilla.org

All code running on the servers behind hg.mozilla.org is in the version-control-tools repository.

Deployment of new code to hg.mozilla.org is performed via an Ansible playbook defined in the version-control-tools
repository. To deploy new code, simply run:

$./deploy hgmo

Important: Files from your local machine’s version-control-tools working copy will be installed on servers. Be
aware of any local changes you have performed, as they might be reflected on the server.

Scheduled Outage Policy

For outages expected to last nor more than one hour no advanced notice to Sheriffs or Developers is required;
however, it is recommended that a notification is posted on the relevant Slack/Matrix channels at the time of outage
commencement.

94 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

Should an issue occur that makes it likely for the outage to extend beyond the one hour mark, if possible the work
should be rolled back and rescheduled for another date.

For outages expected to last more than one hour Sheriffs and Developers require notice at least one business day
prior to the scheduled outage time. A notification must be posted on the relevant Slack/Matrix channels at the time of
outage commencement.

Outage scheduling should be mindful of peak development times, and where possible shuold be scheduled to occur
during North American off-peak periods: before 9am US/Eastern, over lunch (noon US/Eastern or US/Pacific), or
after 5pm US/Pacific.

Operational Secrets

Secrets can be checked in to version-control-tools by encrypting and decrypting them with sops. To encrypt/decrypt
variables checked in to this repo, you will need to:

1. Have your Auth0 email be given permission to access the version-control-tools secrets key. Ask about this in
#vcs, or file a bug under hg.mozilla.org.

2. Install the GCP SDK.

3. Install sops and go through the GCP setup steps.

With sops installed, you can encrypt and decrypt files with:

$ sops --decrypt path/to/file/configfile.yaml
$ sops --encrypt path/to/file/configfile.yaml

After running these commands, only keys in the configuration that are suffixed with “_encrypted” will have their
values encrypted. All other values are left as cleartext.

sops will automatically use the correct key configuration using the .sops.yaml file in the root of the repository. When
you run ./deploy hgmo, all configuration files containing secrets will be decrypted automatically.

Deployment Gotchas

Not all processes are restarted as part of upgrades. Notably, the httpd + WSGI process trees are not restarted. This
means that Python or Mercurial upgrades may not been seen until the next httpd service restart. For this reason,
deployments of Mercurial upgrades should be followed by manually restarting httpd when each server is out of the
load balancer.

Restarting httpd/wsgi Processes

Note: this should be codified in an Ansible playbook

If a restart of the httpd and WSGI process tree is needed, perform the following:

1. Log in to the Zeus load balancer at https://zlb1.external.ops.mdc1.mozilla.com:9090

2. Find the hgweb-http pool.

3. Mark as host as draining then click Update.

2.5. hg.mozilla.org 95

https://cloud.google.com/sdk/docs/downloads-apt-get
https://github.com/mozilla/sops#encrypting-using-gcp-kms
https://zlb1.external.ops.mdc1.mozilla.com:9090

Mozilla Version Control Tools, Release 0

4. Poll the draining host for active connections by SSHing into the host and curling http://localhost/
server-status?auto. If you see more than 1 active connection (the connection performing server-status),
repeat until it goes away.

5. systemctl restart httpd.service

6. Put the host back in service in Zeus.

7. Repeat 3 to 6 until done with all hosts.

Dealing with high memory on hgweb

Sometimes memory usage on hgweb can spike to very high levels as a result of too many connections coming in at
once, and the memory usage may not decrease without manual intervention. If memory usage has spiked as a result of
increased number of connections, administrators can run sudo apachectl graceful to gracefully restart httpd.

Zeus Rate Limiting

Zeus has some rate limiting rules defined for hgweb.

• Rates are defined in the “Rates” section in Zeus.

– Catalogs > Rates > “hg-rate”

– A value of 0 for a rate means “do not use this rate”.

• Rates are used in “Rules”.

– Services > hg.mozilla.org-https > Rules > Edit > hgweb-rate-rule

– There you can see the content of the rule, which references the rate.

• Rules are applied to the virtual server.

– Use the “Enable”/”Disabled” checkbox to activate/deactivate the rule.

• Viewing the effect of the rate limiting rule is possible from the activity view.

– Activity > Current Activity > Chart data > “Rate Limit Queue HG” > Plot

Forcing a hgweb Repository Re-clone

It is sometimes desirable to force a re-clone of a repository to each hgweb node. For example, if a new Mercurial
release offers newer features in the repository store, you may need to perform a fresh clone in order to upgrade the
repository on-disk format.

To perform a re-clone of a repository on hgweb nodes, the hgmo-reclone-repos deploy target can be used:

$./deploy hgmo-reclone-repos mozilla-central releases/mozilla-beta

The underlying Ansible playbook integrates with the load balancers and will automatically take machines out of
service and wait for active connections to be served before performing a re-clone. The re-clone should thus complete
without any client-perceived downtime.

96 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

Repository Mirroring

The replication/mirroring of repositories is initiated on the master/SSH server. An event is written into a distributed
replication log and it is replayed on all available mirrors. See Replication for more.

Most repository interactions result in replication occurring automatically. In a few scenarios, you’ll need to manually
trigger replication.

The vcsreplicator Mercurial extension defines commands for creating replication messages. For a full list of
available commands run hg help -r vcsreplicator. The following commands are common.

hg replicatehgrc Replicate the hgrc file for the repository. The .hg/hgrc file will effectively be copied to mirrors
verbatim.

hg replicatesync Force mirrors to synchronize against the master. This ensures the repo is present on mirrors, the
hgrc is in sync, and all repository data from the master is present.

Run this if mirrors ever get out of sync with the master. It should be harmless to run this on any repo at any
time.

hg -R <repo> replicatedelete Atomically delete this repo from the ssh master and all mirrors. The repo will be
moved to a non-public location and removed.

Important: You will need to run /var/hg/venv_tools/bin/hg instead of /usr/bin/hg so Python package
dependencies required for replication are loaded.

Marking Repositories as Read-only

Repositories can be marked as read-only. When a repository is read-only, pushes are denied with a message saying the
repository is read-only.

To mark an individual repository as read-only, create a .hg/readonlyreason file. If the file has content, it will
be printed to the user as the reason the repository is read-only.

To mark all repositories on hg.mozilla.org as read-only, create the /repo/hg/readonlyreason file. If the file
has content, it will be printed to the user.

Retiring Repositories

Users can delete their own repositories - this section applies only to non-user repositories.

Convention is to retire (aka delete) repositories by moving them out of the user accessible spaces on the master and
deleting from webheads.

This can be done via ansible playbook in the version-control-tools repository:

$ cd ansible
$ ansible-playbook -i hosts -e repo=relative/path/on/server hgmo-retire-repo.yml

Managing Repository Hooks

It is somewhat common to have to update hooks on various repositories.

The procedure for doing this is pretty simple:

1. Update a .hg/hgrc file on the SSH master

2.5. hg.mozilla.org 97

Mozilla Version Control Tools, Release 0

2. Replicate hgrc to mirrors

Generally speaking, sudo vim to edit .hg/hgrc files is sufficient. Ideally, you should use sudo -u hg vim
.hg/hgrc.

To replicate hgrc changes to mirrors after updating an hgrc, simply run:

$ /var/hg/venv_tools/bin/hg replicatehgrc

Note: hg replicatehgrc operates on the repo in the current directory.

The definition of hooks is somewhat inconsistent. Generally speaking, hook entries are cargo culted from another
repo.

Try Head Management

The Try repository continuously grows new heads as people push to it. There are some version control operations that
scale with the number of heads. This means that the repository gets slower as the number of heads increases.

To work around this slowness, we periodically remove old heads. We do this by performing dummy merges. The
procedure for this is as follows:

Clone the Try repo. This will be very slow unless --uncompressed is used.
$ hg clone --uncompressed -U https://hg.mozilla.org/try
$ cd try
Verify heads to merge (this could take a while on first run)
$ hg log -r 'head() and branch(default) and not public()'
Capture the list of heads to merge
$ hg log -r 'head() and branch(default) and not public()' -T '{node}\n' > heads
Update the working directory to the revision to be merged into. A recent
mozilla-central revision is typically fine.
$ hg up <revision>
Do the merge by invoking `hg debugsetparents` repeatedly
$ for p2 in `cat heads`; do echo $p2; hg debugsetparents . $p2; hg commit -m 'Merge
→˓try head'; done
Push to try without scheduling any jobs
You may wish to post in Matrix or Slack with a notice as well
$ hg push -r . ssh://hg.mozilla.org/try

Clonebundles Management

Various repositories have their content snapshotted and uploaded to S3. These snapshots (bundles in Mercurial par-
lance) are advertised via the Mercurial server to clients and are used to seed initial clones. See Cloning from Pre-
Generated Bundles for more.

From an operational perspective, bundle generation is triggered by the hg-bundle-generate.service
and hg-bundle-generate.timer systemd units on the master server. This essentially runs the
generate-hg-s3-bundles script. Its configuration lives in the script itself as well as /repo/hg/bundles/
repos (which lists the repos to operate on and their bundle generation settings).

The critical output of periodic bundle generation are the objects uploaded to S3 (to multiple buckets in various AWS
regions) and the advertisement of these URLs in per-repo .hg/clonebundles.manifest files. Essentially for
each repo:

1. Bundles are generated

98 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

2. Bundles are uploaded to multiple S3 buckets

3. clonebundles.manifest is updated to advertise newly-uploaded URLs

4. clonebundles.manifest is replicated from hgssh to hgweb mirrors

5. Clients access clonebundles.manifest as part of hg clone and start requesting referenced URLs.

If bundle generation fails, it isn’t the end of the world: the old bundles just aren’t as up to date as they could be.

Important: The S3 buckets have automatic 7 day expiration of objects. The assumption is that bundle generation
completes successfully at least once a week. If bundle generation doesn’t run for 7 days, the objects referenced in
clonebundles.manifest files will expire and clients will encounter HTTP 404 errors.

In the event that a bundle is corrupted, manual intervention may be required to mitigate to problem.

As a convenience, a backup of the .hg/clonebundles.manifest file is created during bundle generation. It
lives at .hg/clonebundles.manifest.old. If a new bundle is corrupt but an old one is valid, the mitigation
is to restore from backup:

$ cp .hg/clonebundles.manifest.old .hg/clonebundles.manifest
$ /var/hg/venv_tools/bin/hg replicatesync

If a single bundle or type of bundle is corrupted or causing problems, it can be removed from the clonebundles.
manifest file so clients stop seeing it.

Inside the clonebundles.manifest file are N types of bundles uploaded to M S3 buckets (plus a CDN URL).
The bundle types can be identified by the BUNDLESPEC value of each entry. For example, if stream clone bundles are
causing problems, the entries with a BUNDLESPEC containing none-packed could be removed.

Danger: Removing entries from a clonebundles.manifest can be dangerous.

The removal of entries could shift a lot of traffic from S3/CDN to the hgweb servers themselves - possibly over-
loading them.

The removal of a particular entry type could have performance implications for Firefox CI. For example, removing
stream clone bundles will make hg clone take several minutes longer. This is often acceptable as a short-term
workaround and is preferred to removing clone bundles entirely.

Important: If modifying a .hg/clonebundles.manifest file, remember to run /repo/hg/venv_tools/
bin/hg replicatesync to trigger the replication of that file to hgweb mirrors. Otherwise clients won’t see the
changes!

Corrupted fncache File

In rare circumstances, a .hg/store/fncache file can become corrupt. This file is essentially a cache of all known
files in the .hg/store directory tree.

If this file becomes corrupt, symptoms often manifest as stream clones being unable to find a file. e.g. during working
directory update there will be an error:

abort: No such file or directory: '<path>'

2.5. hg.mozilla.org 99

Mozilla Version Control Tools, Release 0

You can test the theory that the fncache file is corrupt by grepping for the missing path in the .hg/store/fncache
file. There should be a <path>.i entry in the fncache file. If it is missing, the fncache file is corrupt.

To rebuild the fncache file:

$ sudo -u <user> /var/hg/venv_tools/bin/hg -R <repo> debugrebuildfncache

Where <user> is the user that owns the repo (typically hg) and <repo> is the local filesystem path to the repo to
repair.

hg debugrebuildfncache should be harmless to run at any time. Worst case, it effectively no-ops. If you are
paranoid. make a backup copy of .hg/store/fncache before running the command.

Important: Under no circumstances should .hg/store/fncache be removed or altered by hand. Doing so may
result in further repository damage.

Mirrors in pushdataaggregator_groups File

On the SSH servers, the /repo/hg/pushdataaggregator_groups file lists all hgweb mirrors that must have
acknowledged replication of a message before that message is re-published to replicatedpushdata Kafka topic.
This topic is then used to publish events to Pulse, SNS, etc.

When adding or removing hgweb machines from active service, this file needs to be manually updated to reflect the
current set of active mirrors.

If an hgweb machine is removed and the pushdataaggregator_groups file is not updated, messages won’t be
re-published to the replicatedpushdata Kafka topic. This should eventually result in an alert for lag of that
Kafka topic.

If an hgweb machine is added and the pushdataaggregator_groups file is not updated, messages could be
re-published to the replicatedpushdata Kafka topic before the message has been acknowledged by all replicas.
This could result in clients seeing inconsistent repository state depending on which hgweb server they access.

Verifying Replication Consistency

The replication service tries to ensure that repositories on multiple servers are as identical as possible. But testing for
this using standard filesystem comparison tools is difficult because some bits on disk may vary even though Mercurial
data is consistent.

The hg mozrepohash command can be used to display hashes of important Mercurial data. If the output from this
command is identical across machines, then the underlying repository stores should be identical.

To mass collect hashes of all repositories, you can run something like the following on an hgssh host:

$ /var/hg/version-control-tools/scripts/find-hg-repos.py /repo/hg/mozilla/ | \
sudo -u hg -g hg parallel --progress --res /var/tmp/repohash \
/var/hg/venv_tools/bin/hg -R /repo/hg/mozilla/{} mozrepohash

or the following on an hgweb host:

$ /var/hg/version-control-tools/scripts/find-hg-repos.py /repo/hg/mozilla/ | \
sudo -u hg -g hg parallel --progress --res /var/tmp/repohash \
/var/hg/venv_replication/bin/hg -R /repo/hg/mozilla/{} mozrepohash

100 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

This command will use GNU parallel to run hg mozrepohash on all repositories found by the find-hg-repos.
py script and write the results into /var/tmp/repohash.

You can then rsync those results to a central machine and compare output:

$ for h in hgweb{1,2,3,4}.dmz.mdc1.mozilla.com; do \
rsync -avz --delete-after --exclude stderr $h:/var/tmp/repohash/ $h/ \

done

$ diff -r hgweb1.dmz.mdc1.mozilla.com hgweb2.dmz.mdc1.mozilla.com

SSH Server Services

This section describes relevant services running on the SSH servers.

An SSH server can be in 1 of 2 states: master or standby. At any one time, only a single server should be in the master
state.

Some services always run on the SSH servers. Some services only run on the active master.

The standby server is in a state where it is ready to become the master at any time (such as if the master crashes).

Important: The services that run on the active master are designed to only have a single global instance. Running
multiple instances of these services can result in undefined behavior or event data corruption.

Master Server Management

The current active master server is denoted by the presence of a /repo/hg/master.<hostname> file. e.g. the
presence of /repo/hg/master.hgssh1.dmz.mdc1.mozilla.com indicates that hgssh1.dmz.mdc1.
mozilla.com is the active master.

All services that should have only a single instance (running on the master) have systemd unit configs that prevent the
unit from starting if the master.<hostname> file for the current server does not exist. So, as long as only a single
master.<hostname> file exists, it should not be possible to start these services on more than one server.

The hg-master.target systemd unit provides a common target for starting and stopping all systemd units that
should only be running on the active master server. The unit only starts if the /repo/hg/master.<hostname>
file is present.

Note: The hg-master.target unit only tracks units specific to the master. Services like the sshd daemon
processing Mercurial connections are always running and aren’t tied to hg-master.target.

The /repo/hg/master.<hostname> file is monitored every few seconds by the hg-master-monitor.
timer and associated /var/hg/version-control-tools/scripts/hg-master-start-stop script.
This script looks at the status of the /repo/hg/master.<hostname> file and the hg-master.target unit
and reconciles the state of hg-master.target with what is wanted.

For example, if /repo/hg/master.hgssh1.dmz.mdc1.mozilla.com exists and hg-master.target
isn’t active, hg-master-start-stop will start hg-master.target. Similarly, if /repo/hg/master.
hgssh1.dmz.mdc1.mozilla.com is deleted, hg-master-start-stopwill ensure hg-master.target
(and all associated services by extension) are stopped.

So, the process for transitioning master-only services from one machine to another is to delete one master.
<hostname> file then create a new master.<hostname> for the new master.

2.5. hg.mozilla.org 101

Mozilla Version Control Tools, Release 0

Important: Since hg-master-monitor.timer only fires every few seconds and stopping services may take
several seconds, one should wait at least 60s between removing one master.<hostname> file and creating a new
one for a server server. This limitation could be improved with more advanced service state tracking.

sshd_hg.service

This systemd service provides the SSH server for accepting external SSH connections that connect to Mercurial.

This is different from the system’s SSH service (sshd.service). The differences from a typical SSH service are
as follows:

• The service is running on port 222 (not port 22)

• SSH authorized keys are looked up in LDAP (not using the system auth)

• All logins are processed via pash, a custom Python script that dispatches to Mercurial or performs other
adminstrative tasks.

This service should always be running on all servers, even if they aren’t the master. This means that hg-master.
target does not control this service.

hg-bundle-generate.timer and hg-bundle-generate.service

These systemd units are responsible for creating Mercurial bundles for popular repositories and uploading them to S3.
The bundles it produces are also available on a CDN at https://hg.cdn.mozilla.net/.

These bundles are advertised by Mercurial repositories to facilitate bundle-based cloning, which drastically reduces
the load on the hg.mozilla.org servers.

This service only runs on the master server.

pushdataaggregator-pending.service

This systemd service monitors the state of the replication mirrors and copies fully acknowledged/applied messages
into a new Kafka topic (replicatedpushdatapending).

The replicatedpushdatapending topic is watched by the vcsreplicator-headsconsumer process on
the hgweb machines.

This service only runs on the master server.

pushdataaggregator.service

This systemd service monitors the state of the replication mirrors and copies fully acknowledged/applied messages
into a new Kafka topic (replicatedpushdata).

The replicatedpushdata topic is watched by other services to react to repository events. So if this service stops
working, other services will likely sit idle.

This service only runs on the master server.

102 Chapter 2. Table of Contents

https://hg.cdn.mozilla.net/

Mozilla Version Control Tools, Release 0

pulsenotifier.service

This systemd service monitors the replicatedpushdata Kafka topic and sends messages to Pulse to advertise
repository events.

For more, see Change Notifications.

The Pulse notifications this service sends are relied upon by various applications at Mozilla. If it stops working, a lot
of services don’t get notifications and things stop working.

This service only runs on the master server.

snsnotifier.service

This systemd service monitors the replicatedpushdataKafka topic and sends messages to Amazon S3 and SNS
to advertise repository events.

For more, see Change Notifications.

This service is essentially identical to pulsenotifier.service except it publishes to Amazon services, not
Pulse.

unifyrepo.service

This systemd service periodically aggregates the contents of various repositories into other repositories.

This service and the repositories it writes to are currently experimental.

This service only runs on the master server.

Monitoring and Alerts

hg.mozilla.org is monitored by Nagios.

check_hg_bundle_generate_age

This check monitors the last generation time of clone bundles. The check is a simple wrapper around the
check_file_age check. It monitors the age of the /repo/hg/bundles/lastrun file. This file should be
touched every ~24h when the hg-bundle-generate.service unit completes.

Remediation

If this alert fires, it means the hg-bundle-generate.service unit hasn’t completed in the past 1+ days. This
failure is non-urgent. But the failure needs to be investigated within 5 days.

A bug against the hg.mozilla.org service operator should be filed. The alert can be acknowledged once a bug is on file.

If the alert turns critical and an hg.mozilla.org service operator has not acknowledged the alert’s existence, attempts
should be made to page a service operator. The paging can be deferred until waking hours for the person being paged,
as the alert does not represent an immediate issue. The important thing is that the appropriate people are made aware
of the alert so they can fix it.

2.5. hg.mozilla.org 103

Mozilla Version Control Tools, Release 0

check_zookeeper

check_zookeeper monitors the health of the ZooKeeper ensemble running on various servers. The check is installed
on each server running ZooKeeper.

The check verifies 2 distinct things: the health of an individual ZooKeeper node and the overall health of the ZooKeeper
ensemble (cluster of nodes). Both types of checks should be configured where this check is running.

Expected Output

When everything is functioning as intended, the output of this check should be:

zookeeper node and ensemble OK

Failures of Individual Nodes

A series of checks will be performed against the individual ZooKeeper node. The following error conditions are
possible:

NODE CRITICAL - not responding “imok”: <response> The check sent a ruok request to ZooKeeper and the
server failed to respond with imok. This typically means the node is in some kind of failure state.

NODE CRITICAL - not in read/write mode: <mode> The check sent a isro request to ZooKeeper and the server
did not respond with rw. This means the server is not accepting writes. This typically means the node is in some
kind of failure state.

NODE WARNING - average latency higher than expected: <got> > <expected> The average latency to service
requests since last query is higher than the configured limit. This node is possibly under higher-than-expected
load.

NODE WARNING - open file descriptors above percentage limit: <value> The underlying Java process is close
to running out of available file descriptors.

We should never see this alert in production.

If any of these node errors is seen, #vcs should be notified and the on call person for these servers should be notified.

Failures of Overall Ensemble

A series of checks is performed against the ZooKeeper ensemble to check for overall health. These checks are installed
on each server running ZooKeeper even though the check is seemingly redundant. The reason is each server may have
a different perspective on ensemble state due to things like network partitions. It is therefore important for each server
to perform the check from its own perspective.

The following error conditions are possible:

ENSEMBLE WARNING - node (HOST) not OK: <state> A node in the ZooKeeper ensemble is not returning
imok to an ruok request.

As long as this only occurs on a single node at a time, the overall availability of the ZooKeeper ensemble is
not compromised: things should continue to work without service operation. If the operation of the ensemble is
compromised, a different error condition with a critical failure should be raised.

ENSEMBLE WARNING - socket error connecting to HOST: <error> We were unable to speak to a host in the
ensemble.

104 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

This error can occur if ZooKeeper is not running on a node it should be running on.

As long as this only occurs on a single node at a time, the overall availability of the ZooKeeper ensemble is not
compromised.

ENSEMBLE WARNING - node (HOST) is alive but not available A ZooKeeper server is running but it isn’t
healthy.

This likely only occurs when the ZooKeeper ensemble is not fully available.

ENSEMBLE CRITICAL - unable to find leader node; ensemble likely not writable We were unable to identify
a leader node in the ZooKeeper ensemble.

This error almost certainly means the ZooKeeper ensemble is down.

ENSEMBLE WARNING - only have X/Y expected followers This warning occurs when one or more nodes in the
ZooKeeper ensemble isn’t present and following the leader node.

As long as we still have a quorum of nodes in sync with the leader, the overall state of the ensemble should not
be compromised.

ENSEMBLE WARNING - only have X/Y in sync followers This warning occurs when one or more nodes in the
ZooKeeper ensemble isn’t in sync with the leader node.

This warning likely occurs after a node was restarted or experienced some kind of event that caused it to get out
of sync.

check_vcsreplicator_lag

check_vcsreplicator_lag monitors the replication log to see if consumers are in sync.

This check runs on every host that runs the replication log consumer daemon, which is every hgweb machine. The
check is only monitoring the state of the host it runs on.

The replication log consists of N independent partitions. Each partition is its own log of replication events. There
exist N daemon processes on each consumer host. Each daemon process consumes a specific partition. Events for any
given repository are always routed to the same partition.

Consumers maintain an offset into the replication log marking how many messages they’ve consumed. When there are
more messages in the log than the consumer has marked as applied, the log is said to be lagging. A lagging consumer
is measured by the count of messages it has failed to consume and by the elapsed time since the first unconsumed
message was created. Time is the more important lag indicator because the replication log can contain many small
messages that apply instantaneously and thus don’t really constitute a notable lag.

When the replication system is working correctly, messages written by producers are consumed within milliseconds
on consumers. However, some messages may take several seconds to apply. Consumers do not mark a message as
consumed until it has successfully applied it. Therefore, there is always a window between event production and
marking it as consumed where consumers are out of sync.

Expected Output

When a host is fully in sync with the replication log, the check will output the following:

OK - 8/8 consumers completely in sync

OK - partition 0 is completely in sync (X/Y)
OK - partition 1 is completely in sync (W/Z)
...

2.5. hg.mozilla.org 105

Mozilla Version Control Tools, Release 0

This prints the count of partitions in the replication log and the consuming offset of each partition.

When a host has some partitions that are slightly out of sync with the replication log, we get a slightly different output:

OK - 2/8 consumers out of sync but within tolerances

OK - partition 0 is 1 messages behind (0/1)
OK - partition 0 is 1.232 seconds behind
OK - partition 1 is completely in sync (32/32)
...

Even though consumers are slightly behind replaying the replication log, the drift is within tolerances, so the check is
reporting OK. However, the state of each partition’s lag is printed for forensic purposes.

Warning and Critical Output

The monitor alerts when the lag of any one partition of the replication log is too great. As mentioned above, lag is
measured in message count and time since the first unconsumed message was created. Time is the more important lag
indicator.

When a partition/consumer is too far behind, the monitor will issue a WARNING or CRITICAL alert depending on
how far behind consumers are. The output will look like:

WARNING - 2/8 partitions out of sync

WARNING - partition 0 is 15 messages behind (10/25)
OK - partition 0 is 5.421 seconds behind
OK - partition 1 is completely in sync (34/34)
...

The first line will contain a summary of all partitions’ sync status. The following lines will print per-partition state.

The check will also emit a warning when there appears to be clock drift between the producer and the consumer.:

WARNING - 0/8 partitions out of sync
OK - partition 0 is completely in sync (25/25)
WARNING - clock drift of -1.234s between producer and consumer
OK - partition 1 is completely in sync (34/34)
...

Remediation to Consumer Lag

If everything is functioning properly, a lagging consumer will self correct on its own: the consumer daemon is just
behind (due to high load, slow network, etc) and it will catch up over time.

In some rare scenarios, there may be a bug in the consumer daemon that has caused it to crash or enter a endless loop
or some such. To check for this, first look at systemd to see if all the consumer daemons are running:

$ systemctl status vcsreplicator@*.service

If any of the processes aren’t in the active (running) state, the consumer for that partition has crashed for some
reason. Try to start it back up:

$ systemctl start vcsreplicator@*.service

You might want to take a look at the logs in the journal to make sure the process is happy:

106 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

$ journalctl -f --unit vcsreplicator@*.service

If there are errors starting the consumer process (including if the consumer process keeps restarting due to crashing
applying the next available message), then we’ve encountered a scenario that will require a bit more human involve-
ment.

Important: At this point, it might be a good idea to ping people in #vcs or page Developer Services on Call, as they
are the domain experts.

If the consumer daemon is stuck in an endless loop trying to apply the replication log, there are generally two ways
out:

1. Fix the condition causing the endless loop.

2. Skip the message.

We don’t yet know of correctable conditions causing endless loops. So, for now the best we can do is skip the message
and hope the condition doesn’t come back:

$ /var/hg/venv_replication/bin/vcsreplicator-consumer /etc/mercurial/vcsreplicator.
→˓ini --skip --partition N

Note: The --partition argument is semi-important: it says which Kafka partition to pull the to-be-skipped
message from. The number should be the value from the systemd service that is failing / reporting lag.

Important: Skipping messages could result in the repository replication state getting out of whack.

If this only occurred on a single machine, consider taking the machine out of the load balancer until the incident is
investigated by someone in #vcs.

If this occurred globally, please raise awareness ASAP.

Important: If you skip a message, please file a bug in Developer Services :: hg.mozilla.org with details of the
incident so the root cause can be tracked down and the underlying bug fixed.

check_vcsreplicator_pending_lag

check_vcsreplicator_pending_lag monitors the replication log to see whether the
vcsreplicator-headsconsumer process has processed all available messages.

This check is similar to vcsvcsreplicator_lag except it is monitoring the processing of the
replicatedpushdatapending topic as performed by the vcsreplicator-headsconsumer process.

Expected Output

When a host is fully in sync with the replication log, the check will output the following:

2.5. hg.mozilla.org 107

https://bugzilla.mozilla.org/enter_bug.cgi?product=Developer%20Services&component=Mercurial%3A%20hg.mozilla.org

Mozilla Version Control Tools, Release 0

OK - 1/1 consumers completely in sync

OK - partition 0 is completely in sync (X/Y)

When a host has some partitions that are slightly out of sync with the replication log, we get a slightly different output:

OK - 1/1 consumers out of sync but within tolerances

OK - partition 0 is 1 messages behind (0/1)
OK - partition 0 is 1.232 seconds behind

Even though consumers are slightly behind replaying the replication log, the drift is within tolerances, so the check is
reporting OK. However, the state of each partition’s lag is printed for forensic purposes.

Warning and Critical Output

The monitor alerts when the lag of the replication log is too great. Lag is measured in message count and time since
the first unconsumed messaged was created. Time is the more important lag indicator.

When a partition/consumer is too far behind, the monitor will issue a WARNING or CRITICAL alert depending on
how far behind consumers are. The output will look like:

WARNING - 1/1 partitions out of sync

WARNING - partition 0 is 15 messages behind (10/25)
OK - partition 0 is 5.421 seconds behind

The check will also emit a warning when there appears to be clock drift between the producer and the consumer.:

WARNING - 0/1 partitions out of sync
OK - partition 0 is completely in sync (25/25)
WARNING - clock drift of -1.234s between producer and consumer

Remediation to Consumer Lag

Because of the limited functionality performed by the vcsreplicator-headsconsumer process, this alert
should never fire.

If this alert fires, the likely cause is the vcsreplicator-headsconsumer process /
vcsreplicator-heads.service daemon has crashed. Since this process operates mostly identically
across machines, it is expected that a failure will occur on all servers, not just 1.

First check the status of the daemon process:

$ systemctl status vcsreplicator-heads.service

If the service isn’t in the active (running) state, the consumer daemon has crashed for some reason. Try to start
it:

$ systemctl start vcsreplicator-heads.service

You might want to take a look at the logs in the journal to make sure the process is happy:

$ journalctl -f --unit vcsreplicator-heads.service

108 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

If there are errors starting the consumer process (including if the consumer process keeps restarting due to crashing
applying the next available message), then we’ve encountered a scenario that will require a bit more human involve-
ment.

Important: If the service is not working properly after restart, escalate to VCS on call.

check_pushdataaggregator_pending_lag

check_pushdataaggregator_pending_lag monitors the lag of the aggregated replication log (the
pushdataaggregator-pending.service systemd service).

The check verifies that the aggregator service has copied all fully replicated messages to the
replicatedpushdatapending Kafka topic.

The check will alert if the number of outstanding ready-to-copy messages exceeds configured thresholds.

Important: If messages aren’t being copied into the aggregated message log, recently pushed changesets won’t be
exposed on https://hg.mozilla.org/.

Expected Output

Normal output will say that all messages have been copied and all partitions are in sync or within thresholds:

OK - aggregator has copied all fully replicated messages

OK - partition 0 is completely in sync (1/1)
OK - partition 1 is completely in sync (1/1)
OK - partition 2 is completely in sync (1/1)
OK - partition 3 is completely in sync (1/1)
OK - partition 4 is completely in sync (1/1)
OK - partition 5 is completely in sync (1/1)
OK - partition 6 is completely in sync (1/1)
OK - partition 7 is completely in sync (1/1)

Failure Output

The check will print a summary line indicating total number of messages behind and a per-partition breakdown of
where that lag is. e.g.:

CRITICAL - 2 messages from 2 partitions behind

CRITICAL - partition 0 is 1 messages behind (1/2)
OK - partition 1 is completely in sync (1/1)
CRITICAL - partition 2 is 1 messages behind (1/2)
OK - partition 3 is completely in sync (1/1)
OK - partition 4 is completely in sync (1/1)
OK - partition 5 is completely in sync (1/1)
OK - partition 6 is completely in sync (1/1)
OK - partition 7 is completely in sync (1/1)

(continues on next page)

2.5. hg.mozilla.org 109

https://hg.mozilla.org/

Mozilla Version Control Tools, Release 0

(continued from previous page)

See https://mozilla-version-control-tools.readthedocs.io/en/latest/hgmo/ops.html
for details about this check.

Remediation to Check Failure

If the check is failing, first verify the Kafka cluster is operating as expected. If it isn’t, other alerts on the hg machines
should be firing. Failures in this check can likely be ignored if the Kafka cluster is in a known bad state.

If there are no other alerts, there is a chance the daemon process has become wedged. Try bouncing the daemon:

$ systemctl restart pushdataaggregator-pending.service

Then wait a few minutes to see if the lag decreased. You can also look at the journal to see what the daemon is doing:

$ journalctl -f --unit pushdataaggregator-pending.service

If things are failing, escalate to VCS on call.

check_pushdataaggregator_lag

check_pushdataaggregator_lag monitors the lag of the aggregated replication log (the
pushdataaggregator.service systemd service).

The check verifies that the aggregator service has copied all fully replicated messages to the unified, aggregate Kafka
topic.

The check will alert if the number of outstanding ready-to-copy messages exceeds configured thresholds.

Important: If messages aren’t being copied into the aggregated message log, derived services such as Pulse notifica-
tion won’t be writing data.

Expected Output

Normal output will say that all messages have been copied and all partitions are in sync or within thresholds:

OK - aggregator has copied all fully replicated messages

OK - partition 0 is completely in sync (1/1)

Failure Output

The check will print a summary line indicating total number of messages behind and a per-partition breakdown of
where that lag is. e.g.:

CRITICAL - 1 messages from 1 partitions behind

CRITICAL - partition 0 is 1 messages behind (1/2)

(continues on next page)

110 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

(continued from previous page)

See https://mozilla-version-control-tools.readthedocs.io/en/latest/hgmo/ops.html
for details about this check.

Remediation to Check Failure

If the check is failing, first verify the Kafka cluster is operating as expected. If it isn’t, other alerts on the hg machines
should be firing. Failures in this check can likely be ignored if the Kafka cluster is in a known bad state.

If there are no other alerts, there is a chance the daemon process has become wedged. Try bouncing the daemon:

$ systemctl restart pushdataaggregator.service

Then wait a few minutes to see if the lag decreased. You can also look at the journal to see what the daemon is doing:

$ journalctl -f --unit pushdataaggregator.service

If things are failing, escalate to VCS on call.

check_pulsenotifier_lag

check_pulsenotifier_lag monitors the lag of Pulse Change Notifications in reaction to server events.

The check is very similar to check_vcsreplicator_lag. It monitors the same class of thing under the hood:
that a Kafka consumer has read and acknowledged all available messages.

For this check, the consumer daemon is the pulsenotifier service running on the master server. It is a systemd
service (pulsenotifier.service). Its logs are in /var/log/pulsenotifier.log.

Expected Output

There is a single consumer and partition for the pulse notifier Kafka consumer. So, expected output is something like
the following:

OK - 1/1 consumers completely in sync

OK - partition 0 is completely in sync (159580/159580)

See https://mozilla-version-control-tools.readthedocs.io/en/latest/hgmo/ops.html
for details about this check.

Remediation to Check Failure

There are 3 main categories of check failure:

1. pulse.mozilla.org is down

2. The pulsenotifier daemon has crashed or wedged

3. The hg.mozilla.org Kafka cluster is down

2.5. hg.mozilla.org 111

Mozilla Version Control Tools, Release 0

Looking at the last few lines of /var/log/pulsenotifier.log should indicate reasons for the check failure.

If Pulse is down, the check should be acked until Pulse service is restored. The Pulse notification daemon should
recover on its own.

If the pulsenotifier daemon has crashed, try restarting it:

$ systemctl restart pulsenotifier.service

If the hg.mozilla.org Kafka cluster is down, lots of other alerts are likely firing. You should alert VCS on call.

In some cases, pulsenotifier may repeatedly crash due to a malformed input message, bad data, or some such.
Essentially, the process encounters bad input, crashes, restarts via systemd, encounters the same message again,
crashes, and the cycle repeats until systemd gives up. This scenario should be rare, which is why the daemon doesn’t
ignore bad messages (ignoring messages could lead to data loss).

If the daemon becomes wedged on a specific message, you can tell the daemon to skip the next message by running:

$ /var/hg/venv_tools/bin/vcsreplicator-pulse-notifier --skip /etc/mercurial/
→˓notifications.ini

This command will print a message like:

skipped hg-repo-init-2 message in partition 0 for group pulsenotifier

Then exit. You can then restart the daemon (if necessary) via:

$ systemctl start pulsenotifier.service

Repeat as many times as necessary to clear through the bad messages.

Important: If you skip messages, please file a bug against Developer Services :: hg.mozilla.org
and include the systemd journal output for pulsenotifier.service showing the error messages.

check_snsnotifier_lag

check_snsnotifier_lag monitors the lag of Amazon SNS Change Notifications in reaction to server events.

This check is essentially identical to check_pulsenotifier_lag except it monitors the service that posts to
Amazon SNS as opposed to Pulse. Both services share common code. So if one service is having problems, there’s a
good chance the other service is as well.

The consumer daemon being monitored by this check is tied to the snsnotifier.service systemd service. Its
logs are in /var/log/snsnotifier.log.

Expected Output

Output is essentially identical to check_pulsenotifier_lag.

Remediation to Check Failure

Remediation is essentially identical to check_pulsenotifier_lag.

The main differences are the names of the services impacted.

112 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

The systemd service is snsnotifier.service. The daemon process is /var/hg/venv_tools/bin/
vcsreplicator-sns-notifier.

Adding/Removing Nodes from Zookeeper and Kafka

When new servers are added or removed, the Zookeeper and Kafka clusters may need to be rebalanced. This typically
only happens when servers are replaced.

The process is complicated and requires a number of manual steps. It shouldn’t be performed frequently enough to
justify automating it.

Adding a new server to Zookeeper and Kafka

The first step is to assign a Zookeeper ID in Ansible. See https://hg.mozilla.org/hgcustom/version-control-tools/rev/
da8687458cd1 for an example commit. Find the next available integer that hasn’t been used before. This is typically
N+1 where N is the last entry in that file.

Note: Assigning a Zookeeper ID has the side-effect of enabling Zookeeper and Kafka on the server. On the next
deploy, Zookeeper and Kafka will be installed.

Deploy this change via ./deploy hgmo.

During the deploy, some Nagios alerts may fire saying the Zookeeper ensemble is missing followers. e.g.:

hg is WARNING: ENSEMBLE WARNING - only have 4/5 expected followers

This is because as the deploy is performed, we’re adding references to the new Zookeeper server before it is actually
started. These warnings should be safe to ignore.

Once the deploy finishes, start Zookeeper on the new server:

$ systemctl start zookeeper.service

Nagios alerts for the Zookeeper ensemble should clear after Zookeeper has started on the new server.

Wait a minute or so then start Kafka on the new server:

$ systemctl start kafka.service

At this point, Zookeeper and Kafka are both running and part of their respective clusters. Everything is in a mostly
stable state at this point.

Rebalancing Kafka Data to the New Server

When the new Kafka node comes online, it will be part of the Kafka cluster but it won’t have any data. In other words,
it won’t really be used (unless a cluster event such as creation of a new topic causes data to be assigned to it).

To have the new server actually do something, we’ll need to run some Kafka tools to rebalance data.

The tool used to rebalance data is /opt/kafka/bin/kafka-reassign-partitions.sh. It has 3 modes of
operation, all of which we’ll use:

1. Generate a reassignment plan

2. Execute a reassignment plan

2.5. hg.mozilla.org 113

https://hg.mozilla.org/hgcustom/version-control-tools/rev/da8687458cd1
https://hg.mozilla.org/hgcustom/version-control-tools/rev/da8687458cd1

Mozilla Version Control Tools, Release 0

3. Verify reassignments have completed

All command invocations require a --zookeeper argument defining the Zookeeper servers to connect to. The value
for this argument should be the zookeeper.connect variable from /etc/kafka/server.properties.
e.g. localhost:2181/hgmoreplication. If this value doesn’t match exactly, the ‘‘–generate‘‘ step may
emit empty output and other operations may fail.

The first step is to generate a JSON document that will be used to perform data reassignment. To do this, we need a
list of broker IDs to move data to and a JSON file listing the topics to move.

The list of broker IDs is the set of Zookeeper IDs as defined in ansible/group_vars/hgmo (this is the file you
changed earlier to add the new server). Simply select the servers you wish for data to exist on. e.g. 14,15,16,17,
20.

The JSON file denotes which Kafka topics should be moved. Typically every known Kafka topic is moved. Use the
following as a template:

{
"topics": [
{"topic": "pushdata"},
{"topic": "replicatedpushdata"},
{"topic": "replicatedpushdatapending"},

],
"version": 1

}

Hint: You can find the set of active Kafka topics by doing an ls /var/lib/kafka/logs and looking at
directory names.

Once you have all these pieces of data, you can run kafka-reassign-partitions.sh to generate a proposed
reassignment plan:

$ /opt/kafka/bin/kafka-reassign-partitions.sh \
--zookeeper <hosts> \
--generate \
--broker-list <list> \
--topics-to-move-json-file topics.json

This will output 2 JSON blocks:

Current partition replica assignment

{...}
Proposed partition reassignment configuration

{...}

You’ll need to copy and paste the 2nd JSON block (the proposed reassignment) to a new file, let’s say
reassignments.json.

Then we can execute the data reassignment:

$ /opt/kafka/bin/kafka-reassign-partitions.sh \
--zookeeper <hosts> \
--execute \
--reassignment-json-file reassignments.json

Data reassignment can take up to several minutes. We can see the status of the reassignment by running:

114 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

$ /opt/kafka/bin/kafka-reassign-partitions.sh \
--zookeeper <hosts> \
--verify \
--reassignment-json-file reassignments.json

If your intent was to move Kafka data off a server, you can verify data has been removed by looking in the /var/
lib/kafka/logs data on that server. If there is no topic/partition data, there should be no sub-directories in that
directory. If there are sub-directories (they have the form topic-<N>), adjust your topics.json file, generate a
new reassignments.json file and execute a reassignment.

Removing an old Kafka Node

Once data has been removed from a Kafka node, it can safely be turned off.

The first step is to remove the server from the Zookeeper/Kafka list in Ansible. See https://hg.mozilla.org/hgcustom/
version-control-tools/rev/adc5024917c7 for an example commit.

Deploy this change via ./deploy hgmo.

Next, stop Kafka and Zookeeper on the server:

$ systemctl stop kafka.service
$ systemctl stop zookeeper.service

At this point, the old Kafka/Zookeeper node is shut down and should no longer be referenced.

Clean up by disabling the systemd services:

$ systemctl disable kafka.service
$ systemctl disable zookeeper.service

Kafka Nuclear Option

If Kafka and/or Zookeeper lose quorum or the state of the cluster gets out of sync, it might be necessary to reset the
cluster.

A hard reset of the cluster is the nuclear option: full data wipe and starting the cluster from scratch.

A full reset consists of the following steps:

1. Stop all Kafka consumers and writers

2. Stop all Kafka and Zookeeper processes

3. Remove all Kafka and Zookeeper data

4. Define Zookeeper ID on each node

5. Start Zookeeper 1 node at a time

6. Start Kafka 1 node at a time

7. Start all Kafka consumers and writers

To stop all Kafka consumers and writers:

2.5. hg.mozilla.org 115

https://hg.mozilla.org/hgcustom/version-control-tools/rev/adc5024917c7
https://hg.mozilla.org/hgcustom/version-control-tools/rev/adc5024917c7

Mozilla Version Control Tools, Release 0

hgweb*
$ systemctl stop vcsreplicator@*.service

hgssh*
$ systemctl stop hg-master.target

You will also want to make all repositories read-only by creating the /repo/hg/readonlyreason file (and
having the content say that pushes are disabled for maintenance reasons).

To stop all Kafka and Zookeeper processes:

$ systemctl stop kafka.service
$ systemctl stop zookeeper.service

To remove all Kafka and Zookeeper data:

$ rm -rf /var/lib/kafka /var/lib/zookeeper

To define the Zookeeper ID on each node (the /var/lib/zookeeper/myid file), perform an Ansible deploy:

$./deploy hgmo

Note: The deploy may fail to create some Kafka topics. This is OK.

Then, start Zookeeper one node at a time:

$ systemctl start zookeeper.service

Then, start Kafka one node at a time:

$ systemctl start kafka.service

At this point, the Kafka cluster should be running. Perform an Ansible deploy again to create necessary Kafka topics:

$./deploy hgmo

At this point, the Kafka cluster should be fully capable of handling hg.mo events. Nagios alerts related to Kafka and
Zookeeper should clear.

You can now start consumer daemons:

hgweb
$ systemctl start vcsreplicator@*.service

hgssh
$ systemctl start hg-master.target

When starting the consumer daemons, look at the journal logs for any issues connecting to Kafka.

As soon as the daemons start running, all Nagios alerts for the systems should clear.

Finally, make repositories pushable again:

$ rm /repo/hg/readonlyreason

116 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

2.5.13 Upgrading Mercurial

This document describes how to upgrade the Mercurial version deployed to hg.mozilla.org.

Managing Mercurial Packages

We generally don’t use Mercurial packages provided by upstream or from distros because they aren’t suitable or aren’t
new enough. So, we often need to build them ourselves.

Building RPMs

Mercurial RPMs are created by invoking make targets in Mercurial’s build system. From a Mercurial source checkout:

$ make docker-centos7

This will build Mercurial RPMs in isolated Docker containers and store the results in the packages/ directory. .rpm
files can be found under packages/<distro>/RPMS/*.rpm. e.g. packages/centos7/RPMS/x86_64/
mercurial-3.9-1.x86_64.rpm.

Building .deb Packages

The process for producing Debian .deb packages is similar: run Mercurial’s make targets for building packages inside
Docker:

$ make docker-ubuntu-xenial

.deb files will be available in the packages/ directory.

Uploading Files to S3

Built packages are uploaded to the moz-packages S3 bucket.

CentOS 6 packages go in the CentOS6 folder. CentOS 7 packages in the CentOS7 folder.

When uploading files, they should be marked as world readable, since we have random systems downloading from
this bucket.

Upgrading And Modifying Templates

The repository contains a vendored copy of Mercurial’s templates plus modifications in the hgtemplates/ direc-
tory. These templates are used by the hgweb server.

We have made several modifications to the templates. The most significant modification is the addition of the
gitweb_mozilla theme, which is a fork of the gitweb theme. We have also made a number of changes to the json
theme to facilitate rendering additional data not exposed by Mercurial itself.

2.5. hg.mozilla.org 117

Mozilla Version Control Tools, Release 0

Modifying Templates

When modifying a template, it isn’t enough to simply change a template file in hgtemplates/: you must also track
that change by recording it somewhere in hgtemplates/.patches/.

Most modifications are tracked by patch files. Essentially, there exists a standalone patch file describing the change.
To modify a template via patch file, do the following:

1. Create a new Mercurial changeset like you normally would. i.e. make file changes and hg commit the result.

2. Export the just-created changeset to a standalone patch file. e.g. hg export . > hgtemplates/.
patches/my-change.patch.

3. Track the new patch file via hg add hgtemplates/.patches/<name>.patch.

4. Modify the hgtemplates/.patches/series file and add the new patch file to the list.

5. Run run-tests /hgserver/tests/test-template-sync.t and verify the test passes.

test-template-sync.t verifies that the current state of the checkout matches what would be obtained if all
modifications were performed on a fresh copy of the templates. In other words, it verifies we can reproduce the
current state of the templates.

If the test passes, hg commit --amend or hg histedit your changesets so the modifications to
hgtemplates/.patches are part of the changeset that modifies files in hgtemplates/. Then submit that
for review and land when acceptable.

For other modifications (such as adding or removing a file), see the file lists at the top of hgtemplates/.
patches/mozify-templates.py to influence behavior.

Upgrading Templates

When Mercurial is upgraded, we need to synchronize our vendored templates with the new templates from upstream.

To do that, we run the hgtemplates/.patches/mozify-templates.py script. This script will:

1. Wipe away hgtemplates/.

2. Copy the canonical templates from upstream into hgtemplates/.

3. Perform special modifications to templates (notably adding and removing certain files and performing hard-
coded template transforms).

4. Attempt to apply and commit each patch listed in hgtemplates/.patches/series.

Important: Ensure your working directory is clean and hgtemplates/ is free of untracked files before continuing.
Run hg revert -C hgtemplates/ and hg purge hgtemplates/ to do this.

To perform an upgrade:

$ hgtemplates/.patches/mozify-templates.py /path/to/mercurial/templates \
hgtemplates hgtemplates

e.g.:

$ hgtemplates/.patches/mozify-templates.py venv/mercurials/4.6.2/lib/python2.7/site-
→˓packages/mercurial/templates \

hgtemplates hgtemplates

118 Chapter 2. Table of Contents

Mozilla Version Control Tools, Release 0

This tells the script to copy templates from the 1st argument, to grab patches and files from the 2nd argument, and to
write the result into the 3rd argument.

If everything is successful, several commits would have been made. You can use e.g. hg show stack (assuming
the show extension is enabled) to see them. These changesets can be removed via hg prune or hg strip without
causing harm.

If the script fails, chances are it failed to run hg import to apply a patch. Your working directory may or may not
be in a good state. Check that with hg status and resolve via hg revert etc as appropriate.

To recover from a non-working patch file, you’ll need to update the failed patch file until it applies cleanly. To do that,
look at the process output for the name of the patch file that failed to apply. Next, you’ll attempt to apply it manually.
e.g. if the foo.patch file fails:

$ hg import --partial hgtemplates/.patch/foo.patch

You will then need to resolve any conflicts, fix the files until they are in the state you want, etc. Then hg commit
--amend the result. This will produce a new changeset with a working version of the patch.

Next, you will update the failing .patch file with the new version and commit the result. e.g.

$ hg export > hgtemplates/.patch/foo.patch $ hg commit -m ‘hgtemplates: update foo.patch for Mercurial
4.7 upgrade’

Then you need to start the template upgrade process over from the beginning with the modified .patch file in place.
e.g.:

$ hg up @
$ hg rebase -s tip -d .
$ hgtemplates/.patches/mozify-templates.py venv/mercurials/4.6.2/lib/python2.7/site-
→˓packages/mercurial/templates \

hgtemplates hgtemplates

You can also safely hg prune or hg strip the changesets produced by mozify-templates.py.

Once you’ve repeated this process and mozify-templates.py completes without error, hgtemplates/ now
contains the upstream templates plus our modifications.

Then, modify hgserver/tests/test-template-sync.t so it picks up the Mercurial templates from the
appropriate Mercurial version in its mozify-templates.py invocation. And run this test and verify all is happy.
Then commit that change.

At this point, the repository has several commits. There could be modifications to hgtemplates/.patches/.
There will be changesets tracking the upstream changes to hgtemplates/ and changes made by each patch. And
there should be a changeset for the change to test-template-sync.t.

At this point, it is recommended to run hg histedit and roll all the changesets together. This will produce a unified
changeset containing every change. It should effectively be a diff of the upstream changes plus whatever changes to
patches were needed to accommodate upstream changes. This changeset should be suitable for review.

2.5.14 Updating the Hg Certificate

Every two years, the Hg SSL Certificate expires and must be renewed. This requires actions by several parties: Mozilla
Hg Developers, WebOps and end users. It is assumed that the Mozilla Hg Developers will orchestrate the certificate
rollover by following these steps:

1. About one month out from expiration:

• File tracking bug for Certificate Update

2.5. hg.mozilla.org 119

Mozilla Version Control Tools, Release 0

• File bug for WebOps to:

• Generate new certificate

• Install in load balancer without enabling it

• Take note of the new SHA256 fingerprint for future reference

2. One week before the new certificate goes live:

• Send notifications to users of their need to act

• See text of “Sample Announcement to Users” below

• Announce timing of new certificate activation

• Include new certificate fingerprint

• This information can be sent directly or as a reference to a bug comment, as was done in
2018.

• See “Sample Additional Instructions For Users” below

• Places for the announcements:

• <dev-version-control@lists.mozilla.org>

• <release-engineering@lists.mozilla.org>

• <dev-platform@lists.mozilla.org>

• In 2018, announcements were also made to these lists, but the actual list addresses were
obfuscated and their actual names unknown. Please update this document if anyone knows
the identity of these mailing lists

• <firef. . . @mozilla.org>

• <firef. . . @mozilla.com>

• <auto-. . . @mozilla.com>

3. At transition time:

• File bug to update server side certificate fingerprint

• Configwizard extension

• Taskcluster secret project/taskcluster/gecko/hgfingerprint

• Get WebOps to activate the certificate

• Deploy server side certificate changes

4. Ensure everything works

• Immediately after the new certificate is live, and local hostsecurity has been set, try a hg clone or hg
pull to ensure that Hg is working with the new certificate.

Sample Preliminary Announcement to Users:

Each biennium, the users need to be notified of actions they need to take at the time of the certificate roll over. The
following are edited quotes of the 2018 messages to users. The details change, so a literal use of these quotes may not
be appropriate.

In the quote below, datetimes, bug numbers, and SHA fingerprints have been replaced with substitution variables of the
form {VARIABLE_NAME}. If using this quote to make a new message, take care to replace the substitution variables
appropriately.

120 Chapter 2. Table of Contents

mailto:dev-version-control@lists.mozilla.org
mailto:release-engineering@lists.mozilla.org
mailto:dev-platform@lists.mozilla.org

Mozilla Version Control Tools, Release 0

hg.mozilla.org’s x509 server certificate (AKA an “SSL certificate”) will be rotated at {DATETIME} Bug
{TRACKING_BUG_NUMBER} tracks this change.

You may have the certificate’s fingerprint pinned in your hgrc files. Automated jobs may pin the fingerprint
as well. If you have the fingerprint pinned, you will need to take action otherwise Mercurial will refuse
the connect to hg.mozilla.org once the certificate is swapped.

The easiest way to ensure your pinned fingerprint is up-to-date is to run mach vcs-setup from a
Mercurial checkout (it can be from an old revision). If running Mercurial 3.9+ (which you should be in
order to have security fixes), both the old and new fingerprints will be pinned and the transition will “just
work.” Once the new fingerprint is enabled on the server, run mach vcs-setup again to remove the
old fingerprint.

Fingerprints and details of the new certificate (including hgrc config snippets you can copy) are located
at Bug {CERT_BUG_NUMBER} From a certificate level, this transition is pretty boring: just a standard
certificate renewal from the same CA.

The Matrix channel for this operational change will be #vcs. Fallout in Firefox CI should be discussed in
#ci. Please track any bugs related to this change against Bug {TRACKING_BUG_NUMBER}.

Sample Additional Instructions for users:

The new certificate has been issued in bug {BUG_NUMBER}.

The new fingerprint:

sha256: {SHA256_FINGERPRINT}

We plan to swap in the new certificate on {DATETIME}.

Mercurial’s fingerprint pinning should be configured as follows: Be careful of whitespace when copying
the fingerprints. They should be in a comma-delimited list on the same line in the file:

Mercurial 3.9+

[hostsecurity] hg.mozilla.org:fingerprints = sha256:{OLD_SHA256_FINGERPRINT},sha256:{SHA256_FINGERPRINT}

After the new certificate is live

After the new certificate is installed, you can drop the old certificate fingerprint from the config.

Mercurial 3.9+

[hostsecurity] hg.mozilla.org:fingerprints = sha256:{SHA256_FINGERPRINT}

2.6 GitHub Webhooks

Mozilla collects and republishes GitHub Webhooks for a number of Mozilla’s organizations and projects.

2.6.1 Overall Architecture

GitHub Webhooks are configured at the organizational or project level to publish application/json payloads to
https://3abyt2fapj.execute-api.us-west-2.amazonaws.com/prod/webhook.

These HTTP requests are delivered to an Amazon API Gateway service operated by the Developer Productivity team.
Each webhook request invokes an AWS Lambda function which does the following:

• Publishes the record to an AWS Kinesis Firehose

2.6. GitHub Webhooks 121

https://developer.github.com/webhooks/
https://3abyt2fapj.execute-api.us-west-2.amazonaws.com/prod/webhook

Mozilla Version Control Tools, Release 0

• Publishes the record to an all AWS SNS topic and optionally a a public AWS SNS topic if the event is non-
private.

Data published to the Kinesis Firehose is flushed to Amazon S3 for long-term storage and to facilitate analytics.

Additional AWS Lambda functions consume the public SNS topic and republish events to other channels, such as
Pulse.

Private Events

While the ingestion server often receives all events for an organization or repository, not all events are republished in
public channels.

The following events are excluded from the public:

• Any event belonging to a private repository

• Team membership changes (membership and team_add events)

• Transition of repository from private to public (public event)

• Repository creation, deletion, or public/private transitions (repository event)

• Any new events GitHub adds that aren’t in a list of allowed events

2.6.2 Pulse Notifications

Pulse is a RabbitMQ exchange operated by Mozilla that serves as a nexus of event publishing for various systems.

GitHub Webhook events are republished to the exchange/github-webhooks/v1 exchange.

The routing key for each message is of the form <repository>/<event> where <repository> is the GitHub
account/organization + repository and <event> is the GitHub event name. e.g. mozilla/gecko-dev/push or
servo/servo/issues.

The JSON message published to pulse has the following relevant keys:

event GitHub event name. e.g. push, issues, or status.

request_id UUID uniquely identifying this message. The ID is generated by GitHub.

payload The payload of the GitHub event. The formats are documented at https://developer.github.com/v3/activity/
events/types/.

Delivery of GitHub events to Pulse is best effort. If Pulse is down, data may fail to publish.

2.6.3 SNS Topic

Non-private GitHub events are published to the arn:aws:sns:us-west-2:699292812394:github-webhooks-public
AWS SNS topic.

2.6.4 Kinesis Firehose and S3 Access

Access to the streaming GitHub data in Kinesis Firehose and the historical data retained in S3 can be granted on a
per-case basis. If interested, email developer-services@mozilla.org.

122 Chapter 2. Table of Contents

https://wiki.mozilla.org/Auto-tools/Projects/Pulse
https://tools.taskcluster.net/pulse-inspector/#!((exchange:exchange/github-webhooks/v1,routingKeyPattern:%23))
https://developer.github.com/v3/activity/events/types/
https://developer.github.com/v3/activity/events/types/

CHAPTER 3

Python Module Documentation

• All Python Modules

3.1 mozautomation package

3.1.1 Submodules

3.1.2 mozautomation.bugzilla module

mozautomation.bugzilla.get_cookie_auth(host=u’bugzilla.mozilla.org’)
Obtain Bugzilla auth cookies from Firefox.

This returns an iterable of 2-tuples of (login, cookie) sorted by the preferred usage order.

3.1.3 mozautomation.buildbotdata module

class mozautomation.buildbotdata.BuildInfo(o)
Bases: object

Describes buildbot data for a specific build/job

class mozautomation.buildbotdata.BuildbotDump(load_time=None)
Bases: object

Represents information from a buildbot dump file.

jobs_timeline()
Obtain a timeline of events for all jobs.

This is a generator of tuples describing events as they occur over time.

load_date(d)

load_dump(o)

123

Mozilla Version Control Tools, Release 0

load_time(t)

slave_efficiency(slave_id=None, slave_name=None)
Obtain a summary of activity on a given slave.

slave_groups()
Obtain information about groups of related slaves.

Returns a dictionary mapping the group name to a set of slave names.

slave_name(slave_id)

slave_names

slave_timeline(slave_id=None, slave_name=None)
Obtain a timeline of events on a given slave.

class mozautomation.buildbotdata.BuilderInfo(category, master_id, name, slave_ids)
Bases: tuple

category
Alias for field number 0

master_id
Alias for field number 1

name
Alias for field number 2

slave_ids
Alias for field number 3

mozautomation.buildbotdata.available_buildbot_dump_files()
Obtain URLs of all buildbot dump files containing raw info for jobs.

3.1.4 mozautomation.buildstatus module

class mozautomation.buildstatus.BuildStatusClient(base_uri=u’https://tbpl.mozilla.org/php/’)
Bases: object

Client to interface with build status API.

revision_builds(repo, changeset)
Obtain the build status for a single changeset in a repository.

class mozautomation.buildstatus.BuildStatusResult(o)
Bases: object

class mozautomation.buildstatus.JobResult(d)
Bases: object

Represents the result of an individual automation job.

mozautomation.buildstatus.parse_builder_name(b)
Parse a builder name into metadata.

3.1.5 mozautomation.changetracker module

class mozautomation.changetracker.ChangeTracker(path, bytestype=<type ’str’>)
Bases: object

Data store for tracking changes and bugs and repository events.

124 Chapter 3. Python Module Documentation

Mozilla Version Control Tools, Release 0

add_pushes(tree, pushes)
Insert an iterable of pushes for a tree.

pushes is an iterable of tuples of (pushid, who, when, nodes).

associate_bugs_with_changeset(bugs, changeset)
Associate a numeric bug number with a changeset.

This facilitates rapidly looking up changesets associated with bugs.

changesets_with_bug(bug)

last_push_id(tree)
Return the push ID of the last recorded push to a tree.

Returns an integer or None if no pushes are recorded.

load_pushlog(tree)

pushes_for_changeset(changeset)

tree_id(tree, url=None)

tree_push_head_changesets(tree)
Obtain all pushes on a given tree.

Returns pairs (push_id, head_changeset) like (1, ‘ay¡ø0;¬N!97’).

Use binascii.hexlify to convert to a hexadecimal hash.

wipe_bugs()

wipe_pushlog()

3.1.6 mozautomation.commitparser module

3.1.7 mozautomation.firefoxprofile module

mozautomation.firefoxprofile.find_profiles(find_times=False)
Find Firefox profile directories.

Returns an iterable of profile directories. The first entry is the active/default profile.

mozautomation.firefoxprofile.get_cookies(profile_path, host=None)
Obtain cookies from the profile.

Returns an iterable of dicts containing the raw entries from the cookies database.

host can be specified as a unicode string or an iterable of hostnames to limit results to.

mozautomation.firefoxprofile.sqlite_safe_open(*args, **kwds)
Helper to open SQLite databases in profiles.

Firefox locks database files, preventing new connections. So, we need to copy the entire file and delete it when
we’re done.

3.1.8 mozautomation.releases module

class mozautomation.releases.Releases(d)
Bases: object

Holds information about Firefox releases.

3.1. mozautomation package 125

Mozilla Version Control Tools, Release 0

Instances of this class are derived from the Releases API results.

firefox_nightly_releases()
All releases for Firefox Nightly.

class mozautomation.releases.ReleasesClient(base_uri=’http://releases-api.mozilla.org/’,
opener=None)

Bases: object

Client to the releases API.

The releases API exposes information about builds on Firefox release channels.

releases()

3.1.9 mozautomation.repository module

class mozautomation.repository.MercurialRepository(url)
Bases: object

Interface with a Mozilla Mercurial repository.

push_info(full=False, start_id=0)
Obtain all pushlog info for a repository.

push_info_for_changeset(changeset)
Obtain the push information for a single changeset.

Returns a PushInfo on success or None if no push info is available.

class mozautomation.repository.PushInfo(push_id, d)
Bases: object

Represents an entry from the repository pushlog.

first_node

last_node

nodes
All the changesets pushed in this push.

mozautomation.repository.resolve_trees_to_official(trees)

mozautomation.repository.resolve_trees_to_uris(trees, write_access=False)
Resolve tree names to repositories URIs.

The caller passes in an iterable of tree names. These can be common names, aliases, or official names.

A list of 2-tuples is returned. If a repository could be resolved to a URI, the tuple is (common_name, uri). If a
repository could not be resolved to a URI, the tuple is (specified_name, None).

mozautomation.repository.resolve_uri_to_tree(uri)
Try to resolve a URI back to a known tree.

mozautomation.repository.treeherder_url(tree, rev)
Obtain the Treeherder url for a push.

3.1.10 mozautomation.selfserve module

class mozautomation.selfserve.Branch(client, name, meta=None)
Bases: object

126 Chapter 3. Python Module Documentation

Mozilla Version Control Tools, Release 0

build(build_id)
Obtain info about a build specified by its ID.

builder(builder)
Return info on a single bingler.

builders()
Return info on builders building for this branch.

builds()
Returns a list of builds on this branch.

cancel_build(build_id)
Cancel a build specified by its ID.

rebuild(build_id)
Rebuild the build specified by its ID.

class mozautomation.selfserve.SelfServeClient(uri, opener=None)
Bases: object

branches()
Returns all the branches as Branch instances.

get_job(job_id)
Return information about a specific job.

jobs()
Returns a list of past self-serve request.

mozautomation.selfserve.get_mozilla_self_serve(username, password)

3.1.11 mozautomation.treestatus module

class mozautomation.treestatus.TreeLog(d)
Bases: object

Represents a change in a tree’s status.

class mozautomation.treestatus.TreeStatus(d)
Bases: object

Represents the status of an individual tree.

APPROVAL_REQUEST = 'approval required'

CLOSED = 'closed'

OPEN = 'open'

approval_required

closed

open

class mozautomation.treestatus.TreeStatusClient(base_uri=’https://treestatus.mozilla-
releng.net/’, opener=None)

Bases: object

Client to the Mozilla Tree Status API.

The tree status API controls whether Mozilla’s main source repositories are open or closed.

3.1. mozautomation package 127

Mozilla Version Control Tools, Release 0

all()
Obtain the status of all trees.

Returns a dict of tree names to TreeStatus instances.

tree_logs(tree)

tree_status(tree)
Obtain the status of a single tree.

Returns a TreeStatus instance.

3.1.12 Module contents

3.2 mozhg package

3.2.1 Subpackages

mozhg.tests package

Submodules

mozhg.tests.auth module

Dummy Mercurial extension to facilitate testing of mozhg.auth.getbugzillaauth().

mozhg.tests.auth.HGEXT_BOOTSTRAP()

mozhg.tests.auth.bzauth(ui, require=False, fakegetpass=None, ffprofile=None)

mozhg.tests.auth.bzcreatecookie(ui, profiledir, url, userid, cookie)

mozhg.tests.auth.configitem(*args, **kwargs)

mozhg.tests.test_auth module

class mozhg.tests.test_auth.TestAuth(methodName=’runTest’)
Bases: unittest.case.TestCase

p(*parts)

setUp()
Hook method for setting up the test fixture before exercising it.

tearDown()
Hook method for deconstructing the test fixture after testing it.

test_container()

test_cookie_empty_db()
Ensure empty cookies.db behaves properly.

test_cookie_no_db()
Ensure we react sanely when no cookies.sqlite file is present.

test_find_profiles_path()

128 Chapter 3. Python Module Documentation

Mozilla Version Control Tools, Release 0

test_get_cookie_multiple_paths()
If we have multiple cookies for a domain, one with correct path is used.

test_get_cookie_no_host()
If we request a cookie from another host, we shouldn’t get a cookie.

test_get_cookie_simple()

test_get_profiles_empty()
If we point at a directory without a profiles.ini, we get nothing.

test_get_profiles_single()
A profiles.ini with a single profile works as expected.

test_multiple_profiles_age_ordering()
Profile with newest file content comes first.

test_multiple_profiles_default_first()
Test that the default profile always comes first.

mozhg.tests.test_auth.create_cookies_db(profiledir)
Create a cookies SQLite database as used by Firefox profiles.

mozhg.tests.test_auth.create_login_cookie(profiledir, url, userid, cookie)
Create a Bugzilla login cookie.

Module contents

3.2.2 Submodules

3.2.3 mozhg.auth module

Shared Mercurial code related to authentication.

class mozhg.auth.BugzillaAuth(userid=None, cookie=None, username=None, password=None,
apikey=None)

Bases: object

Holds Bugzilla authentication credentials.

exception mozhg.auth.NoSQLiteError
Bases: exceptions.Exception

Raised when SQLite3 is not available.

mozhg.auth.configureautobmoapikeyauth(ui)
Automatically use Bugzilla API Key auth over HTTP for known services.

Bugzilla credentials are stored in the [bugzilla] section. Mercurial has its own [auth] section for declaring
credentials for remotes. This function carries over the [bugzilla] entries to [auth] entries for trusted services.

mozhg.auth.find_profiles_path()
Find the path containing Firefox profiles.

The location of Firefox profiles is OS dependent. This function handles the differences.

mozhg.auth.get_bugzilla_login_cookie_from_profile(profile, url)
Given a Firefox profile path, try to find the login cookies for the given bugzilla URL.

mozhg.auth.get_profiles(profilesdir)
Obtain information about available Firefox profiles.

3.2. mozhg package 129

Mozilla Version Control Tools, Release 0

The Firefox profiles from the specified path will be loaded. A list of dicts describing each profile will be
returned. The list is sorted according to profile preference. The default profile is always first.

mozhg.auth.getbugzillaauth(ui, require=False, profile=None)
Obtain Bugzilla authentication credentials from any possible source.

This returns a BugzillaAuth instance on success or None on failure.

If require is True, we abort if Bugzilla credentials could not be found.

If profile is defined, we will only consult the profile having this name. The default behavior is to examine
all available profiles.

The order of preference for Bugzilla credentials is as follows:

1) bugzilla.username and bugzilla.apikey from hgrc

2) bugzilla.userid and bugzilla.cookie from hgrc

3) bugzilla.username and bugzilla.password from hgrc

4) login cookies from Firefox profiles

5) prompt the user

The bugzilla.firefoxprofile option is interpreted as a list of Firefox profiles from which data should
be read. This overrides the default sort order.

mozhg.auth.matching_path_len(cookie_path, url_path)

mozhg.auth.register_config_items(configitem)
Registers config items with Mercurial’s registrar.

The argument is a registrar.configitem instance.

mozhg.auth.win_get_folder_path(folder)

3.2.4 Module contents

3.3 vcttesting

3.3.1 vcttesting package

Subpackages

vcttesting.bugzilla package

Submodules

vcttesting.bugzilla.mach_commands module

Module contents

Submodules

vcttesting.docker module

130 Chapter 3. Python Module Documentation

Mozilla Version Control Tools, Release 0

vcttesting.docker_mach_commands module

vcttesting.pulse_mach_commands module

vcttesting.unittest module

Module contents

3.3. vcttesting 131

Mozilla Version Control Tools, Release 0

132 Chapter 3. Python Module Documentation

CHAPTER 4

Indices and tables

• genindex

• search

133

Mozilla Version Control Tools, Release 0

134 Chapter 4. Indices and tables

Python Module Index

m
mozautomation, 128
mozautomation.bugzilla, 123
mozautomation.buildbotdata, 123
mozautomation.buildstatus, 124
mozautomation.changetracker, 124
mozautomation.firefoxprofile, 125
mozautomation.releases, 125
mozautomation.repository, 126
mozautomation.selfserve, 126
mozautomation.treestatus, 127
mozhg, 130
mozhg.auth, 129
mozhg.tests, 129
mozhg.tests.auth, 128
mozhg.tests.test_auth, 128

135

Mozilla Version Control Tools, Release 0

136 Python Module Index

Index

A
add_pushes() (mozautoma-

tion.changetracker.ChangeTracker method),
124

all() (mozautomation.treestatus.TreeStatusClient
method), 127

APPROVAL_REQUEST (mozautoma-
tion.treestatus.TreeStatus attribute), 127

approval_required (mozautoma-
tion.treestatus.TreeStatus attribute), 127

associate_bugs_with_changeset() (moza-
utomation.changetracker.ChangeTracker
method), 125

available_buildbot_dump_files() (in mod-
ule mozautomation.buildbotdata), 124

B
Branch (class in mozautomation.selfserve), 126
branches() (mozautomation.selfserve.SelfServeClient

method), 127
BugzillaAuth (class in mozhg.auth), 129
build() (mozautomation.selfserve.Branch method),

126
BuildbotDump (class in mozautomation.buildbotdata),

123
builder() (mozautomation.selfserve.Branch method),

127
BuilderInfo (class in mozautomation.buildbotdata),

124
builders() (mozautomation.selfserve.Branch

method), 127
BuildInfo (class in mozautomation.buildbotdata), 123
builds() (mozautomation.selfserve.Branch method),

127
BuildStatusClient (class in mozautoma-

tion.buildstatus), 124
BuildStatusResult (class in mozautoma-

tion.buildstatus), 124
bzauth() (in module mozhg.tests.auth), 128

bzcreatecookie() (in module mozhg.tests.auth),
128

C
cancel_build() (mozautomation.selfserve.Branch

method), 127
category (mozautomation.buildbotdata.BuilderInfo

attribute), 124
changesets_with_bug() (mozautoma-

tion.changetracker.ChangeTracker method),
125

ChangeTracker (class in mozautoma-
tion.changetracker), 124

CLOSED (mozautomation.treestatus.TreeStatus at-
tribute), 127

closed (mozautomation.treestatus.TreeStatus at-
tribute), 127

configitem() (in module mozhg.tests.auth), 128
configureautobmoapikeyauth() (in module

mozhg.auth), 129
create_cookies_db() (in module

mozhg.tests.test_auth), 129
create_login_cookie() (in module

mozhg.tests.test_auth), 129

F
find_profiles() (in module mozautoma-

tion.firefoxprofile), 125
find_profiles_path() (in module mozhg.auth),

129
firefox_nightly_releases() (mozautoma-

tion.releases.Releases method), 126
first_node (mozautomation.repository.PushInfo at-

tribute), 126

G
get_bugzilla_login_cookie_from_profile()

(in module mozhg.auth), 129
get_cookie_auth() (in module mozautoma-

tion.bugzilla), 123

137

Mozilla Version Control Tools, Release 0

get_cookies() (in module mozautoma-
tion.firefoxprofile), 125

get_job() (mozautomation.selfserve.SelfServeClient
method), 127

get_mozilla_self_serve() (in module mozau-
tomation.selfserve), 127

get_profiles() (in module mozhg.auth), 129
getbugzillaauth() (in module mozhg.auth), 130

H
HGEXT_BOOTSTRAP() (in module mozhg.tests.auth),

128

J
JobResult (class in mozautomation.buildstatus), 124
jobs() (mozautomation.selfserve.SelfServeClient

method), 127
jobs_timeline() (mozautoma-

tion.buildbotdata.BuildbotDump method),
123

L
last_node (mozautomation.repository.PushInfo

attribute), 126
last_push_id() (mozautoma-

tion.changetracker.ChangeTracker method),
125

load_date() (mozautoma-
tion.buildbotdata.BuildbotDump method),
123

load_dump() (mozautoma-
tion.buildbotdata.BuildbotDump method),
123

load_pushlog() (mozautoma-
tion.changetracker.ChangeTracker method),
125

load_time() (mozautoma-
tion.buildbotdata.BuildbotDump method),
123

M
master_id (mozautomation.buildbotdata.BuilderInfo

attribute), 124
matching_path_len() (in module mozhg.auth), 130
MercurialRepository (class in mozautoma-

tion.repository), 126
mozautomation (module), 128
mozautomation.bugzilla (module), 123
mozautomation.buildbotdata (module), 123
mozautomation.buildstatus (module), 124
mozautomation.changetracker (module), 124
mozautomation.firefoxprofile (module), 125
mozautomation.releases (module), 125
mozautomation.repository (module), 126

mozautomation.selfserve (module), 126
mozautomation.treestatus (module), 127
mozhg (module), 130
mozhg.auth (module), 129
mozhg.tests (module), 129
mozhg.tests.auth (module), 128
mozhg.tests.test_auth (module), 128

N
name (mozautomation.buildbotdata.BuilderInfo at-

tribute), 124
nodes (mozautomation.repository.PushInfo attribute),

126
NoSQLiteError, 129

O
OPEN (mozautomation.treestatus.TreeStatus attribute),

127
open (mozautomation.treestatus.TreeStatus attribute),

127

P
p() (mozhg.tests.test_auth.TestAuth method), 128
parse_builder_name() (in module mozautoma-

tion.buildstatus), 124
push_info() (mozautoma-

tion.repository.MercurialRepository method),
126

push_info_for_changeset() (mozautoma-
tion.repository.MercurialRepository method),
126

pushes_for_changeset() (mozautoma-
tion.changetracker.ChangeTracker method),
125

PushInfo (class in mozautomation.repository), 126

R
rebuild() (mozautomation.selfserve.Branch method),

127
register_config_items() (in module

mozhg.auth), 130
Releases (class in mozautomation.releases), 125
releases() (mozautomation.releases.ReleasesClient

method), 126
ReleasesClient (class in mozautomation.releases),

126
resolve_trees_to_official() (in module

mozautomation.repository), 126
resolve_trees_to_uris() (in module mozau-

tomation.repository), 126
resolve_uri_to_tree() (in module mozautoma-

tion.repository), 126

138 Index

Mozilla Version Control Tools, Release 0

revision_builds() (mozautoma-
tion.buildstatus.BuildStatusClient method),
124

S
SelfServeClient (class in mozautoma-

tion.selfserve), 127
setUp() (mozhg.tests.test_auth.TestAuth method), 128
slave_efficiency() (mozautoma-

tion.buildbotdata.BuildbotDump method),
124

slave_groups() (mozautoma-
tion.buildbotdata.BuildbotDump method),
124

slave_ids (mozautomation.buildbotdata.BuilderInfo
attribute), 124

slave_name() (mozautoma-
tion.buildbotdata.BuildbotDump method),
124

slave_names (mozautoma-
tion.buildbotdata.BuildbotDump attribute),
124

slave_timeline() (mozautoma-
tion.buildbotdata.BuildbotDump method),
124

sqlite_safe_open() (in module mozautoma-
tion.firefoxprofile), 125

T
tearDown() (mozhg.tests.test_auth.TestAuth method),

128
test_container() (mozhg.tests.test_auth.TestAuth

method), 128
test_cookie_empty_db()

(mozhg.tests.test_auth.TestAuth method),
128

test_cookie_no_db()
(mozhg.tests.test_auth.TestAuth method),
128

test_find_profiles_path()
(mozhg.tests.test_auth.TestAuth method),
128

test_get_cookie_multiple_paths()
(mozhg.tests.test_auth.TestAuth method),
128

test_get_cookie_no_host()
(mozhg.tests.test_auth.TestAuth method),
129

test_get_cookie_simple()
(mozhg.tests.test_auth.TestAuth method),
129

test_get_profiles_empty()
(mozhg.tests.test_auth.TestAuth method),
129

test_get_profiles_single()
(mozhg.tests.test_auth.TestAuth method),
129

test_multiple_profiles_age_ordering()
(mozhg.tests.test_auth.TestAuth method), 129

test_multiple_profiles_default_first()
(mozhg.tests.test_auth.TestAuth method), 129

TestAuth (class in mozhg.tests.test_auth), 128
tree_id() (mozautoma-

tion.changetracker.ChangeTracker method),
125

tree_logs() (mozautoma-
tion.treestatus.TreeStatusClient method),
128

tree_push_head_changesets() (mozautoma-
tion.changetracker.ChangeTracker method),
125

tree_status() (mozautoma-
tion.treestatus.TreeStatusClient method),
128

treeherder_url() (in module mozautoma-
tion.repository), 126

TreeLog (class in mozautomation.treestatus), 127
TreeStatus (class in mozautomation.treestatus), 127
TreeStatusClient (class in mozautoma-

tion.treestatus), 127

W
win_get_folder_path() (in module mozhg.auth),

130
wipe_bugs() (mozautoma-

tion.changetracker.ChangeTracker method),
125

wipe_pushlog() (mozautoma-
tion.changetracker.ChangeTracker method),
125

Index 139

	Goals
	Table of Contents
	Developer Guide
	Mercurial Customizations
	Headless Repositories
	Mercurial for Mozillians
	hg.mozilla.org
	GitHub Webhooks

	Python Module Documentation
	mozautomation package
	mozhg package
	vcttesting

	Indices and tables
	Python Module Index
	Index

